IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p4053-d588799.html
   My bibliography  Save this article

Empirical Investigation of the Hygrothermal Diffusion Properties of Permeable Building Membranes Subjected to Variable Relative Humidity Condition

Author

Listed:
  • Toba Samuel Olaoye

    (School of Architecture and Design, University of Tasmania, Inveresk, Launceston 7250, Australia)

  • Mark Dewsbury

    (School of Architecture and Design, University of Tasmania, Inveresk, Launceston 7250, Australia)

  • Hartwig Künzel

    (Fraunhofer Institute for Building Physics IBP, Fraunhoferstr. 10, 83626 Valley, Germany)

Abstract

Hygrothermal modelling is increasingly used to inform building envelope design. A key input for these calculations is the material’s vapour diffusion properties. Respecting a growing international concern, this research has questioned the appropriateness of the current test method to establish construction material for vapour diffusion properties. This article reports on the empirical measurement of the vapour diffusion properties of two vapour-permeable building membranes commonly used in Australia residential systems when subjected to variable relative humidity conditions. The method involved completing dry cup and wet cup standard tests as specified in ISO 12572, (23 °C and 50% relative humidity RH). Further tests were then conducted as temperature remained at 23 °C but the relative humidity changed to 35%, 65% and 80%, respectively, in order to know if the diffusion properties are the same or change with varying relative humidity. The results from the wet cup and dry cup tests under different relative humidity conditions were non-linear and different. These results indicate vapour-permeable membranes behave differently when exposed to different relative humidity conditions. In conclusion, this research demonstrates that the current vapour resistivity test method is inadequate, hence the need to establish more detailed diffusion resistivity properties in different humidity ranges that represent conditions experienced within a building’s external envelope.

Suggested Citation

  • Toba Samuel Olaoye & Mark Dewsbury & Hartwig Künzel, 2021. "Empirical Investigation of the Hygrothermal Diffusion Properties of Permeable Building Membranes Subjected to Variable Relative Humidity Condition," Energies, MDPI, vol. 14(13), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4053-:d:588799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/4053/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/4053/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Fořt & Jiří Šál & Jan Kočí & Robert Černý, 2020. "Energy Efficiency of Novel Interior Surface Layer with Improved Thermal Characteristics and Its Effect on Hygrothermal Performance of Contemporary Building Envelopes," Energies, MDPI, vol. 13(8), pages 1-17, April.
    2. Toba Samuel Olaoye & Mark Dewsbury & Hartwig Kunzel, 2020. "A Method for Establishing a Hygrothermally Controlled Test Room for Measuring the Water Vapor Resistivity Characteristics of Construction Materials," Energies, MDPI, vol. 14(1), pages 1-19, December.
    3. Joaquín Torres-Ramo & Purificación González-Martínez & Nerea Arriazu-Ramos & Ana Sánchez-Ostiz, 2020. "Influence of the Water Vapour Permeability of Airtight Sheets on the Behaviour of Facade," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Raju Sheikh & Shahnaj Shemul, 2024. "An Assessment on the Indoor Environment Quality (IEQ) of Hospital and Patient Satisfaction; A Case Study in Sylhet MAG Osmani Medical College Hospital, Sylhet, Bangladesh," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(7), pages 725-740, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Fořt & Jiří Šál & Jaroslav Žák, 2021. "Combined Effect of Superabsorbent Polymers and Cellulose Fibers on Functional Performance of Plasters," Energies, MDPI, vol. 14(12), pages 1-12, June.
    2. Toba Samuel Olaoye & Mark Dewsbury & Hartwig Kunzel, 2020. "A Method for Establishing a Hygrothermally Controlled Test Room for Measuring the Water Vapor Resistivity Characteristics of Construction Materials," Energies, MDPI, vol. 14(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4053-:d:588799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.