IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9672-d447919.html
   My bibliography  Save this article

User Thermal Comfort in Historic Buildings: Evaluation of the Potential of Thermal Mass, Orientation, Evaporative Cooling and Ventilation

Author

Listed:
  • Mamdooh Alwetaishi

    (Civil Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21099, Saudi Arabia)

  • Ashraf Balabel

    (Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21099, Saudi Arabia
    Mechanical Engineering Department, College of Engineering, Menofia University, Menofia 32511, Egypt)

  • Ahmed Abdelhafiz

    (Civil Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21099, Saudi Arabia
    Civil Engineering Department, College of Engineering, Assiut University, Assiut 71515, Egypt)

  • Usama Issa

    (Civil Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21099, Saudi Arabia
    Civil Engineering Department, College of Engineering, Minia University, Minia 61111, Egypt)

  • Ibrahim Sharaky

    (Civil Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21099, Saudi Arabia
    Material Engineering Department, College of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Amal Shamseldin

    (Civil Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21099, Saudi Arabia
    Department of Archtectural Engineering, College of Engineering, Ain Shams University, Cairo 11566, Egypt)

  • Mohammed Al-Surf

    (U.S. Green Building Council and Green Business Certification Institute, Washington, DC 20037, USA)

  • Mosleh Al-Harthi

    (Electrical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21099, Saudi Arabia)

  • Mohamed Gadi

    (Department of Architecture Built Environment, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK)

Abstract

The study investigated the level of thermal comfort in historical buildings located at a relatively high altitude in the Arabian Desert of Saudi Arabia. The study focused on the impact of the use of thermal mass and orientation on the level of thermal performance at Shubra and Boqri Palaces. Qualitative and quantitative analyses were used in this study, including a questionnaire interview with architecture experts living at the relatively high altitude of Taif city, to obtain data and information from local experts. The computer software TAS EDSL was used along with on-site equipment, such as thermal imaging cameras and data loggers, to observe the physical conditions of the building in terms of its thermal performance. The study revealed that the experts’ age and years of experience were important aspects while collecting data from them during the survey. The use of thermal mass had a slight impact on the indoor air temperature as well as the energy consumption, but it helped in providing thermal comfort. Use of ventilation can improve thermal comfort level. Evaporative cooling technique has a considerable impact on reducing indoor air temperature with 4 °C drop, improving the thermal comfort sensation level. The novelty of this work is that, it links the outcomes of qualitative results of experts with field monitoring as well as computer modelling. This can contribute as method to accurately collect data in similar case studies.

Suggested Citation

  • Mamdooh Alwetaishi & Ashraf Balabel & Ahmed Abdelhafiz & Usama Issa & Ibrahim Sharaky & Amal Shamseldin & Mohammed Al-Surf & Mosleh Al-Harthi & Mohamed Gadi, 2020. "User Thermal Comfort in Historic Buildings: Evaluation of the Potential of Thermal Mass, Orientation, Evaporative Cooling and Ventilation," Sustainability, MDPI, vol. 12(22), pages 1-23, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9672-:d:447919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dudkiewicz, Edyta & Fidorów-Kaprawy, Natalia, 2017. "The energy analysis of a hybrid hot tap water preparation system based on renewable and waste sources," Energy, Elsevier, vol. 127(C), pages 198-208.
    2. Reilly, Aidan & Kinnane, Oliver, 2017. "The impact of thermal mass on building energy consumption," Applied Energy, Elsevier, vol. 198(C), pages 108-121.
    3. Rackes, Adams & Melo, Ana Paula & Lamberts, Roberto, 2016. "Naturally comfortable and sustainable: Informed design guidance and performance labeling for passive commercial buildings in hot climates," Applied Energy, Elsevier, vol. 174(C), pages 256-274.
    4. Lingjun Hao & Daniel Herrera-Avellanosa & Claudio Del Pero & Alexandra Troi, 2020. "What Are the Implications of Climate Change for Retrofitted Historic Buildings? A Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    5. Shan, Kui & Wang, Jiayuan & Hu, Maomao & Gao, Dian-ce, 2019. "A model-based control strategy to recover cooling energy from thermal mass in commercial buildings," Energy, Elsevier, vol. 172(C), pages 958-967.
    6. Michael Darmanis & Murat Çakan & Konstantinos P. Moustris & Kosmas A. Kavadias & Konstantinos-Stefanos P. Nikas, 2020. "Utilisation of Mass and Night Ventilation in Decreasing Cooling Load Demand," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    7. Rodrigues, Eugénio & Fernandes, Marco S. & Gaspar, Adélio Rodrigues & Gomes, Álvaro & Costa, José J., 2019. "Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Enrico Fabrizio & Valentina Monetti, 2015. "Methodologies and Advancements in the Calibration of Building Energy Models," Energies, MDPI, vol. 8(4), pages 1-27, March.
    9. Carlos Fernández Bandera & Jose Pachano & Jaume Salom & Antonis Peppas & Germán Ramos Ruiz, 2020. "Photovoltaic Plant Optimization to Leverage Electric Self Consumption by Harnessing Building Thermal Mass," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    10. Feng, Wei & Zhang, Qianning & Ji, Hui & Wang, Ran & Zhou, Nan & Ye, Qing & Hao, Bin & Li, Yutong & Luo, Duo & Lau, Stephen Siu Yu, 2019. "A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    11. Ana Tejero-González & Paula M. Esquivias, 2019. "Personalized Evaporative Cooler to Reduce Energy Consumption and Improve Thermal Comfort in Free-Running Spaces," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    2. Ashraf Balabel & Mamdooh Alwetaishi, 2021. "Towards Sustainable Residential Buildings in Saudi Arabia According to the Conceptual Framework of “Mostadam” Rating System and Vision 2030," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    3. Robert C. Vella & Charles Yousif & Francisco Javier Rey Martinez & Javier María Rey Hernandez, 2022. "Prioritising Passive Measures over Air Conditioning to Achieve Thermal Comfort in Mediterranean Baroque Churches," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    4. Abdullah Abdulhameed Bagasi & John Kaiser Calautit & Abdullah Saeed Karban, 2021. "Evaluation of the Integration of the Traditional Architectural Element Mashrabiya into the Ventilation Strategy for Buildings in Hot Climates," Energies, MDPI, vol. 14(3), pages 1-31, January.
    5. Lorenzo Diana & Saverio D’Auria & Giovanna Acampa & Giorgia Marino, 2022. "Assessment of Disused Public Buildings: Strategies and Tools for Reuse of Healthcare Structures," Sustainability, MDPI, vol. 14(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashraf Balabel & Mamdooh Alwetaishi, 2021. "Towards Sustainable Residential Buildings in Saudi Arabia According to the Conceptual Framework of “Mostadam” Rating System and Vision 2030," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    2. Gupta, V. & Deb, C., 2023. "Envelope design for low-energy buildings in the tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    3. Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).
    4. Carlo Costantino & Stefano Bigiotti & Alvaro Marucci & Riccardo Gulli, 2024. "Long-Term Comparative Life Cycle Assessment, Cost, and Comfort Analysis of Heavyweight vs. Lightweight Construction Systems in a Mediterranean Climate," Sustainability, MDPI, vol. 16(20), pages 1-29, October.
    5. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    6. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    7. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    8. Leccese, Francesco & Salvadori, Giacomo & Asdrubali, Francesco & Gori, Paola, 2018. "Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls," Applied Energy, Elsevier, vol. 225(C), pages 1078-1089.
    9. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    10. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    11. Ahmed, Omar & Sezer, Nurettin & Ouf, Mohamed & Wang, Liangzhu (Leon) & Hassan, Ibrahim Galal, 2023. "State-of-the-art review of occupant behavior modeling and implementation in building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Sergio Gómez Melgar & Miguel Ángel Martínez Bohórquez & José Manuel Andújar Márquez, 2020. "uhuMEBr: Energy Refurbishment of Existing Buildings in Subtropical Climates to Become Minimum Energy Buildings," Energies, MDPI, vol. 13(5), pages 1-35, March.
    13. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    14. Robert C. Vella & Charles Yousif & Francisco Javier Rey Martinez & Javier María Rey Hernandez, 2022. "Prioritising Passive Measures over Air Conditioning to Achieve Thermal Comfort in Mediterranean Baroque Churches," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    15. Anna Magrini & Giorgia Lentini, 2020. "NZEB Analyses by Means of Dynamic Simulation and Experimental Monitoring in Mediterranean Climate," Energies, MDPI, vol. 13(18), pages 1-25, September.
    16. Rodrigues, Eugénio & Fernandes, Marco S. & Gaspar, Adélio Rodrigues & Gomes, Álvaro & Costa, José J., 2019. "Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    18. Filippo Antoniolli, Andrigo & Naspolini, Helena Flávia & de Abreu, João Frederico & Rüther, Ricardo, 2022. "The role and benefits of residential rooftop photovoltaic prosumers in Brazil," Renewable Energy, Elsevier, vol. 187(C), pages 204-222.
    19. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    20. Eva Lucas Segarra & Germán Ramos Ruiz & Vicente Gutiérrez González & Antonis Peppas & Carlos Fernández Bandera, 2020. "Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets," Sustainability, MDPI, vol. 12(17), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9672-:d:447919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.