IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p577-d1566110.html
   My bibliography  Save this article

Reaching Near-Zero Environmental Impact in Heritage Buildings: The Case of the Wine Cellar of Rocafort de Queralt

Author

Listed:
  • Belén Onecha

    (Escola Tècnica Superior d’Arquitectura de Barcelona (ETSAB), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain)

  • Eduardo Herrador

    (Escola Tècnica Superior d’Arquitectura de Barcelona (ETSAB), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain)

  • Rosnery Castillo

    (Escola Politècnica Superior d’Edificació de Barcelona (EPSEB), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain)

  • Montserrat Bosch

    (Escola Politècnica Superior d’Edificació de Barcelona (EPSEB), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain)

Abstract

In the current context of a necessary reduction in environmental impact, the reuse of heritage buildings is key. Although architectural rehabilitation already significantly reduces this impact, thermal comfort facilities present several challenges, both due to the huge visual impact they entail, compromising buildings’ historical values, as well as the environmental impact due to machines and ducts and the operating energy consumption. This paper demonstrates, through the case study of the Rocafort de Queralt Wine Cellar, that it is possible to reduce to nearly zero the thermal comfort facilities of converted heritage buildings for public cultural use. This historic building, considered one of the “Wine Cathedrals” in Spain, was built in 1918 and is characterized by its architectural style typical of Catalan modernism. The method applied was in situ monitoring, combined with dynamic simulation with DesignBuilder v7 software and NECADA software v2024, considering four different scenarios of the building: (1) the current state; (2) after passive improvements; (3) after architectural rehabilitation; and (4) subject to the climatic conditions expected for 2050 according to IPCC AR4 A2. The conclusions are surprising. In Scenario 2, 87% thermal comfort is reached with zero facilities, and 100% thermal comfort is reached when the location of cultural activities within the building is changed according to geographical orientation and the season of the year.

Suggested Citation

  • Belén Onecha & Eduardo Herrador & Rosnery Castillo & Montserrat Bosch, 2025. "Reaching Near-Zero Environmental Impact in Heritage Buildings: The Case of the Wine Cellar of Rocafort de Queralt," Sustainability, MDPI, vol. 17(2), pages 1-24, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:577-:d:1566110
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mamdooh Alwetaishi & Ashraf Balabel & Ahmed Abdelhafiz & Usama Issa & Ibrahim Sharaky & Amal Shamseldin & Mohammed Al-Surf & Mosleh Al-Harthi & Mohamed Gadi, 2020. "User Thermal Comfort in Historic Buildings: Evaluation of the Potential of Thermal Mass, Orientation, Evaporative Cooling and Ventilation," Sustainability, MDPI, vol. 12(22), pages 1-23, November.
    2. Reilly, Aidan & Kinnane, Oliver, 2017. "The impact of thermal mass on building energy consumption," Applied Energy, Elsevier, vol. 198(C), pages 108-121.
    3. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    5. Muñoz González, C.Mª & León Rodríguez, A.L. & Suárez Medina, R. & Ruiz Jaramillo, J., 2020. "Effects of future climate change on the preservation of artworks, thermal comfort and energy consumption in historic buildings," Applied Energy, Elsevier, vol. 276(C).
    6. Qu, Ke & Chen, Xiangjie & Wang, Yixin & Calautit, John & Riffat, Saffa & Cui, Xin, 2021. "Comprehensive energy, economic and thermal comfort assessments for the passive energy retrofit of historical buildings - A case study of a late nineteenth-century Victorian house renovation in the UK," Energy, Elsevier, vol. 220(C).
    7. Mariangela De Vita & Marianna Rotilio & Chiara Marchionni & Pierluigi De Berardinis, 2023. "Architectural Heritage Indoor Comfort after Retrofit Works: The Case Study of S. Vito Church in L’Aquila, Italy," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    2. Paweł Sokołowski & Grzegorz Nawalany & Małgorzata Michalik, 2022. "Analysis of the Impact of Flooring Material and Construction Solutions on Heat Exchange with the Ground in a Historic Wooden Building," Energies, MDPI, vol. 15(16), pages 1-17, August.
    3. Andrea Longhitano & Vincenzo Costanzo & Gianpiero Evola & Francesco Nocera, 2024. "Microclimate Investigation in a Conference Room with Thermal Stratification: An Investigation of Different Air Conditioning Systems," Energies, MDPI, vol. 17(5), pages 1-17, March.
    4. Martins Metals & Arturs Lesinskis & Anatolijs Borodinecs & Kristaps Turauskis, 2023. "Preliminary Study on Indoor Air Temperature and Moisture Behaviour in 13th-Century Churches in Latvia," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    5. Ashraf Balabel & Mamdooh Alwetaishi, 2021. "Towards Sustainable Residential Buildings in Saudi Arabia According to the Conceptual Framework of “Mostadam” Rating System and Vision 2030," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    6. Cho, Hyun Mi & Yun, Beom Yeol & Kim, Young Uk & Yuk, Hyeonseong & Kim, Sumin, 2022. "Integrated retrofit solutions for improving the energy performance of historic buildings through energy technology suitability analyses: Retrofit plan of wooden truss and masonry composite structure i," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Agnieszka Leśniak & Monika Górka & Izabela Skrzypczak, 2021. "Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study," Energies, MDPI, vol. 14(8), pages 1-20, April.
    8. Leccese, Francesco & Salvadori, Giacomo & Asdrubali, Francesco & Gori, Paola, 2018. "Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls," Applied Energy, Elsevier, vol. 225(C), pages 1078-1089.
    9. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    10. Robert C. Vella & Charles Yousif & Francisco Javier Rey Martinez & Javier María Rey Hernandez, 2022. "Prioritising Passive Measures over Air Conditioning to Achieve Thermal Comfort in Mediterranean Baroque Churches," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    11. Rodrigues, Eugénio & Fernandes, Marco S. & Gaspar, Adélio Rodrigues & Gomes, Álvaro & Costa, José J., 2019. "Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Lai, Yuan & Papadopoulos, Sokratis & Fuerst, Franz & Pivo, Gary & Sagi, Jacob & Kontokosta, Constantine E., 2022. "Building retrofit hurdle rates and risk aversion in energy efficiency investments," Applied Energy, Elsevier, vol. 306(PB).
    13. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Theodosiou, Theodoros & Tsikaloudaki, Katerina & Kontoleon, Karolos & Giarma, Christina, 2021. "Assessing the accuracy of predictive thermal bridge heat flow methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    15. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    16. Rajat Gupta & Matt Gregg, 2021. "Integrated Testing of Building Fabric Thermal Performance for Calibration of Energy Models of Three Low-Energy Dwellings in the UK," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    17. James Allen & Ari Halberstadt & John Powers & Nael H. El-Farra, 2020. "An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management," Mathematics, MDPI, vol. 8(8), pages 1-28, July.
    18. Marek Borowski & Klaudia Zwolińska & Marcin Czerwiński, 2022. "An Experimental Study of Thermal Comfort and Indoor Air Quality—A Case Study of a Hotel Building," Energies, MDPI, vol. 15(6), pages 1-18, March.
    19. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    20. Abir Khechiba & Djamila Djaghrouri & Moussadek Benabbas & Francesco Leccese & Michele Rocca & Giacomo Salvadori, 2023. "Balancing Thermal Comfort and Energy Consumption in Residential Buildings of Desert Areas: Impact of Passive Strategies," Sustainability, MDPI, vol. 15(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:577-:d:1566110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.