IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p6835-d402860.html
   My bibliography  Save this article

Analysis on Decoupling between Urbanization Level and Urbanization Quality in China

Author

Listed:
  • Xueru Zhang

    (School of Public Administration, Hebei University of Economics and Business, Shijiazhuang 050061, China)

  • Wei Song

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Jingtao Wang

    (Handan Surveying Center of Land and Resources, Handan 056000, China)

  • Bo Wen

    (Chongqing Institute of Geology and Mineral Resources, Chongqing 400000, China)

  • Dazhi Yang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shiliang Jiang

    (Hebei Urban & Rural Planning and Design Institute, Shijiazhuang 050061, China)

  • Yanbin Wu

    (School of Management Science and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China
    GIS Big Data Platform for Socio-Economy in Hebei, Shijiazhuang 050061, China)

Abstract

After the first industrial revolution, urbanization level worldwide has increased rapidly. As the largest developing country in the world, China has witnessed a rapid improvement in its urbanization level in recent years. Nevertheless, the quality of urbanization has not been improved simultaneously. The relationship between the level and the quality of urbanization has thus become a hot topic for researchers. By introducing the concept and model of decoupling in the field of resources and environment into the analysis of urbanization level and quality, this study evaluated the relationship between urbanization level and urbanization quality of 285 prefecture-level cities in China from 2005 to 2014. It was found that: (1) The urbanization level and urbanization quality in China are unbalanced because the former is growing in a faster rate than the latter. The average urbanization level of China has increased by 27.40% from 42.99% in 2005 to 54.77% in 2014, while the increase of urbanization quality, however, is much slower with only 11.21% for the same period. It can be concluded that China has paid more attention to urbanization level than urbanization quality. (2) From 2005 to 2014, the relationship between China’s urbanization level and quality showed a total of eight decoupling states, of which the main ones were strong negative decoupling (non-ideal state) and growth negative decoupling (close to ideal state), accounting for 38.32% and 33.49% of the total number of samples in China, respectively. (3) The change of urbanization level and urbanization quality in China can be divided into two stages: for the first stage from 2005 to 2010, with rapid improvement in urbanization level, and the other from 2011 to 2014, with rapid improvement in urbanization quality. (4) Spatially, the areas with significant decoupling between urbanization level and urbanization quality are mainly distributed in underdeveloped areas such as the west; and the decoupling presents the spatial pattern of the highest in the west, the second in the middle, and the lowest in the east.

Suggested Citation

  • Xueru Zhang & Wei Song & Jingtao Wang & Bo Wen & Dazhi Yang & Shiliang Jiang & Yanbin Wu, 2020. "Analysis on Decoupling between Urbanization Level and Urbanization Quality in China," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:6835-:d:402860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/6835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/6835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    2. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    3. Wang, Jieyu & Wang, Shaojian & Li, Shijie & Feng, Kuishuang, 2019. "Coupling analysis of urbanization and energy-environment efficiency: Evidence from Guangdong province," Applied Energy, Elsevier, vol. 254(C).
    4. Nicola GALLUZZO, 2019. "An Assessment Of Rurality In Italian Farms And In Their Specialization Using A Quantitative Approach," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 16(1), pages 39-51.
    5. Adams, Samuel & Klobodu, Edem Kwame Mensah, 2017. "Urbanization, democracy, bureaucratic quality, and environmental degradation," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1035-1051.
    6. Subbaraman, Ramnath & Nolan, Laura & Shitole, Tejal & Sawant, Kiran & Shitole, Shrutika & Sood, Kunal & Nanarkar, Mahesh & Ghannam, Jess & Betancourt, Theresa S. & Bloom, David E. & Patil-Deshmukh, An, 2014. "The psychological toll of slum living in Mumbai, India: A mixed methods study," Social Science & Medicine, Elsevier, vol. 119(C), pages 155-169.
    7. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    8. Zhao, Jingjing & Wang, Mengyang, 2018. "A novel assessment of urbanization quality and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 141-154.
    9. Yanjie Zhang & Wei Song & Shun Fu & Dazhi Yang, 2020. "Decoupling of Land Use Intensity and Ecological Environment in Gansu Province, China," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuena Liu & Wei Fang & Haiming Li & Xiaodan Han & Han Xiao, 2021. "Is Urbanization Good for the Health of Middle-Aged and Elderly People in China?—Based on CHARLS Data," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    2. Yanni Xiong & Changyou Li & Mengzhi Zou & Qian Xu, 2022. "Investigating into the Coupling and Coordination Relationship between Urban Resilience and Urbanization: A Case Study of Hunan Province, China," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    3. Lin Li & Kaixu Zhao & Xinyu Wang & Sidong Zhao & Xingguang Liu & Weiwei Li, 2022. "Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi," Land, MDPI, vol. 11(3), pages 1-34, March.
    4. Yuan, Xiao & Zhang, Jinlong & Shi, Jing & Wang, Jiachen, 2024. "What can green finance do for high-quality agricultural development? Fresh insights from China," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    5. Wusheng Zhao & Peiji Shi & Ya Wan & Yan Yao, 2023. "Coupling and Coordination Relationship between Urbanization Quality and Ecosystem Services in the Upper Yellow River: A Case Study of the Lanzhou–Xining Urban Agglomeration, China," Land, MDPI, vol. 12(5), pages 1-20, May.
    6. Yu Hu & Tong Wu & Luo Guo & Shidong Zhang, 2023. "Spatiotemporal Relationships between Ecosystem Health and Urbanization on the Tibetan Plateau from a Coupling Coordination Perspective," Land, MDPI, vol. 12(8), pages 1-17, August.
    7. Pingyi Ma & Xueyan Zhao & Hua Li, 2023. "Spatial–Temporal Evolution of Socio-Ecological System Vulnerability on the Loess Plateau under Rapid Urbanization," Sustainability, MDPI, vol. 15(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boqiang Lin, & Wang, Miao, 2019. "Possibilities of decoupling for China’s energy consumption from economic growth: A temporal-spatial analysis," Energy, Elsevier, vol. 185(C), pages 951-960.
    2. Weiguo Fan & Mengmeng Meng & Jianchang Lu & Xiaobin Dong & Hejie Wei & Xuechao Wang & Qing Zhang, 2020. "Decoupling Elasticity and Driving Factors of Energy Consumption and Economic Development in the Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    3. Eva Litavcová & Jana Chovancová, 2021. "Economic Development, CO 2 Emissions and Energy Use Nexus-Evidence from the Danube Region Countries," Energies, MDPI, vol. 14(11), pages 1-23, May.
    4. Yijia Huang & Jiaqi Zhang & Jinqun Wu, 2020. "Integrating Sustainability Assessment into Decoupling Analysis: A Focus on the Yangtze River Delta Urban Agglomerations," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    5. Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Rhys Manners, 2020. "Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and SWOT Analyses," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    6. Castro, P. & Pedroso, R. & Lautenbach, S. & Vicens, R., 2020. "Farmland abandonment in Rio de Janeiro: Underlying and contributory causes of an announced development," Land Use Policy, Elsevier, vol. 95(C).
    7. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    8. Rami Al Sidawi & Teo Urushadze & Angelika Ploeger, 2020. "Changes in Dairy Products Value Chain in Georgia," Sustainability, MDPI, vol. 12(15), pages 1-29, July.
    9. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    10. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    11. Adam A. Prag & Christian B. Henriksen, 2020. "Transition from Animal-Based to Plant-Based Food Production to Reduce Greenhouse Gas Emissions from Agriculture—The Case of Denmark," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    12. Xavier Simon & Damián Copena & David Pérez-Neira, 2023. "Assessment of the diet-environment-health-cost quadrilemma in public school canteens. an LCA case study in Galicia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12543-12567, November.
    13. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    14. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    15. Peter Horton, 2017. "We need radical change in how we produce and consume food," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1323-1327, December.
    16. Xue, Jin, 2014. "Is eco-village/urban village the future of a degrowth society? An urban planner's perspective," Ecological Economics, Elsevier, vol. 105(C), pages 130-138.
    17. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    18. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    19. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    20. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:6835-:d:402860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.