IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6656-d400297.html
   My bibliography  Save this article

Intensification: A Key Strategy to Achieve Great Animal and Environmental Beef Cattle Production Sustainability in Brachiaria Grasslands

Author

Listed:
  • Abmael da Silva Cardoso

    (Departamento de Zootecnia, Universidade Estadual Paulista (Unesp), Jaboticabal, Sao Paulo 14884-900, Brazil)

  • Rondineli Pavezzi Barbero

    (Departamento de Produção Animal, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro 23890-000, Brazil)

  • Eliéder Prates Romanzini

    (Departamento de Zootecnia, Universidade Estadual Paulista (Unesp), Jaboticabal, Sao Paulo 14884-900, Brazil)

  • Ronyatta Weich Teobaldo

    (Departamento de Zootecnia, Universidade Estadual Paulista (Unesp), Jaboticabal, Sao Paulo 14884-900, Brazil)

  • Fernando Ongaratto

    (Departamento de Zootecnia, Universidade Estadual Paulista (Unesp), Jaboticabal, Sao Paulo 14884-900, Brazil)

  • Marcia Helena Machado da Rocha Fernandes

    (Departamento de Zootecnia, Universidade Estadual Paulista (Unesp), Jaboticabal, Sao Paulo 14884-900, Brazil)

  • Ana Cláudia Ruggieri

    (Departamento de Zootecnia, Universidade Estadual Paulista (Unesp), Jaboticabal, Sao Paulo 14884-900, Brazil)

  • Ricardo Andrade Reis

    (Departamento de Zootecnia, Universidade Estadual Paulista (Unesp), Jaboticabal, Sao Paulo 14884-900, Brazil)

Abstract

Intensification of tropical grassland can be a strategy to increase beef production, but methods for achieving this should maintain or reduce its environmental impact and should not compromise future food-producing capacity. The objective of this review was to discuss the aspects of grassland management, animal supplementation, the environment, and the socioeconomics of grassland intensification. Reducing environmental impact in the form of, for example, greenhouse gas (GHG) emissions is particularly important in Brazil, which is the second-largest beef producer in the world. Most Brazilian pastures, however, are degraded, representing a considerable opportunity for the mitigation and increase of beef-cattle production, and consequently increasing global protein supply. Moreover, in Brazil, forage production is necessary for seasonal feeding strategies that maintain animal performance during periods of forage scarcity. There are many options to achieve this objective that can be adopted alone or in association. These options include improving grassland management, pasture fertilization, and animal supplementation. Improving grazing management has the potential to mitigate GHG emissions through the reduction of the intensity of CO 2 emissions, as well as the preservation of natural areas by reducing the need for expanding pastureland. Limitations to farmers adopting intensification strategies include cultural aspects and the lack of financial resources and technical assistance.

Suggested Citation

  • Abmael da Silva Cardoso & Rondineli Pavezzi Barbero & Eliéder Prates Romanzini & Ronyatta Weich Teobaldo & Fernando Ongaratto & Marcia Helena Machado da Rocha Fernandes & Ana Cláudia Ruggieri & Ricard, 2020. "Intensification: A Key Strategy to Achieve Great Animal and Environmental Beef Cattle Production Sustainability in Brachiaria Grasslands," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6656-:d:400297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cécile M. Godde & Imke J. M. Boer & Erasmus zu Ermgassen & Mario Herrero & Corina E. Middelaar & Adrian Muller & Elin Röös & Christian Schader & Pete Smith & Hannah H. E. Zanten & Tara Garnett, 2020. "Soil carbon sequestration in grazing systems: managing expectations," Climatic Change, Springer, vol. 161(3), pages 385-391, August.
    2. Cardoso, Abmael S. & Berndt, Alexandre & Leytem, April & Alves, Bruno J.R. & de Carvalho, Isabel das N.O. & de Barros Soares, Luis Henrique & Urquiaga, Segundo & Boddey, Robert M., 2016. "Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use," Agricultural Systems, Elsevier, vol. 143(C), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raúl Lorenzo González Marcillo & Walter Efraín Castro Guamàn & Angela Edith Guerrero Pincay & Plutarco Antonio Vera Zambrano & Nelson René Ortiz Naveda & Santiago Alexander Guamàn Rivera, 2021. "Assessment of Guinea Grass Panicum maximum under Silvopastoral Systems in Combination with Two Management Systems in Orellana Province, Ecuador," Agriculture, MDPI, vol. 11(2), pages 1-17, February.
    2. Ronyatta Weich Teobaldo & Abmael da Silva Cardoso & Thais Ribeiro Brito & Rhaony Gonçalves Leite & Eliéder Prates Romanzini & Yury Tatiana Granja-Salcedo & Ricardo Andrade Reis, 2022. "Response of Phytogenic Additives on Enteric Methane Emissions and Animal Performance of Nellore Bulls Raised in Grassland," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    3. Barbara Wróbel & Waldemar Zielewicz & Mariola Staniak, 2023. "Challenges of Pasture Feeding Systems—Opportunities and Constraints," Agriculture, MDPI, vol. 13(5), pages 1-31, April.
    4. André Pastori D’Aurea & Abmael da Silva Cardoso & Yuri Santa Rosa Guimarães & Lauriston Bertelli Fernandes & Luis Eduardo Ferreira & Ricardo Andrade Reis, 2021. "Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management," Sustainability, MDPI, vol. 13(13), pages 1-9, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ymène Fouli & Margot Hurlbert & Roland Kröbel, 2021. "Greenhouse Gas Emissions From Canadian Agriculture: Estimates and Measurements," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 14(35), November.
    2. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    3. Adriane Terezinha Schneider & Rosangela Rodrigues Dias & Mariany Costa Deprá & Darissa Alves Dutra & Richard Luan Silva Machado & Cristiano Ragagnin de Menezes & Leila Queiroz Zepka & Eduardo Jacob-Lo, 2024. "The Intersectionality Between Amazon and Commodities Production: A Close Look at Sustainability," Land, MDPI, vol. 13(10), pages 1-18, October.
    4. André Pastori D’Aurea & Abmael da Silva Cardoso & Yuri Santa Rosa Guimarães & Lauriston Bertelli Fernandes & Luis Eduardo Ferreira & Ricardo Andrade Reis, 2021. "Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management," Sustainability, MDPI, vol. 13(13), pages 1-9, June.
    5. Mosnier, Claire & Duclos, Anne & Agabriel, Jacques & Gac, Armelle, 2017. "Orfee: A bio-economic model to simulate integrated and intensive management of mixed crop-livestock farms and their greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 157(C), pages 202-215.
    6. Dakpo, K Hervé & Latruffe, Laure, 2016. "Agri-environmental subsidies and French suckler cow farms’ technical efficiency accounting for GHGs," Working Papers 245192, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    7. Dumas, Patrice & Wirsenius, Stefan & Searchinger, Tim & Andrieu, Nadine & Vogt-Schilb, Adrien, 2022. "Options to achieve net-zero emissions from agriculture and land use changes in Latin America and the Caribbean," IDB Publications (Working Papers) 12385, Inter-American Development Bank.
    8. Calvano, Maria Paula Cavuto Abrão & Brumatti, Ricardo Carneiro & Barros, Jacqueline Cavalcante & Garcia, Marcos Valério & Martins, Kauê Rodriguez & Andreotti, Renato, 2021. "Bioeconomic simulation of Rhipicephalus microplus infestation in different beef cattle production systems in the Brazilian Cerrado," Agricultural Systems, Elsevier, vol. 194(C).
    9. Maciel, Isabella C.F. & Barbosa, Fabiano A. & Alves, Bruno J.R. & Alvarenga, Ramon C. & Tomich, Thierry R. & Campanha, Mônica M. & Rowntree, Jason E. & Alves, Filipe C. & Lana, Ângela M.Q., 2021. "Nitrous oxide and methane emissions from beef cattle excreta deposited on feedlot pen surface in tropical conditions," Agricultural Systems, Elsevier, vol. 187(C).
    10. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    11. Alexandre C. Köberle & Pedro R. R. Rochedo & André F. P. Lucena & Alexandre Szklo & Roberto Schaeffer, 2020. "Brazil’s emission trajectories in a well-below 2 °C world: the role of disruptive technologies versus land-based mitigation in an already low-emission energy system," Climatic Change, Springer, vol. 162(4), pages 1823-1842, October.
    12. Natalia Vilas Boas Fonseca & Abmael da Silva Cardoso & Angélica Santos Rabelo de Souza Bahia & Juliana Duarte Messana & Eduardo Festozo Vicente & Ricardo Andrade Reis, 2023. "Additive Tannins in Ruminant Nutrition: An Alternative to Achieve Sustainability in Animal Production," Sustainability, MDPI, vol. 15(5), pages 1-11, February.
    13. Monjardino, Marta & Loi, Angelo & Thomas, Dean T. & Revell, Clinton K. & Flohr, Bonnie M. & Llewellyn, Rick S. & Norman, Hayley C., 2022. "Improved legume pastures increase economic value, resilience and sustainability of crop-livestock systems," Agricultural Systems, Elsevier, vol. 203(C).
    14. Pedro Henrique Presumido & Fernando Sousa & Artur Gonçalves & Tatiane Cristina Dal Bosco & Manuel Feliciano, 2018. "Environmental Impacts of the Beef Production Chain in the Northeast of Portugal Using Life Cycle Assessment," Agriculture, MDPI, vol. 8(10), pages 1-19, October.
    15. Patrice Dumas & Stefan Wirsenius & Tim Searchinger & Nadine Andrieu & Adrien Vogt-Schilb, 2022. "Options to achieve net - zero emissions from agriculture and land use changes in Latin America and the Caribbean," Post-Print halshs-03760573, HAL.
    16. Martin C. Parlasca & Matin Qaim, 2022. "Meat Consumption and Sustainability," Annual Review of Resource Economics, Annual Reviews, vol. 14(1), pages 17-41, October.
    17. Wirth, Stephen Björn & Taubert, Franziska & Tietjen, Britta & Müller, Christoph & Rolinski, Susanne, 2021. "Do details matter? Disentangling the processes related to plant species interactions in two grassland models of different complexity," Ecological Modelling, Elsevier, vol. 460(C).
    18. Costa Jr., Newton Borges da & Baldissera, Tiago Celso & Pinto, Cassiano Eduardo & Garagorry, Fabio Cervo & Moraes, Aníbal de & Carvalho, Paulo César de Faccio, 2019. "Public policies for low carbon emission agriculture foster beef cattle production in southern Brazil," Land Use Policy, Elsevier, vol. 80(C), pages 269-273.
    19. de Oliveira Silva, Rafael & Barioni, Luis Gustavo & Hall, J. A. Julian & Moretti, Antonio Carlos & Fonseca Veloso, Rui & Alexander, Peter & Crespolini, Mariane & Moran, Dominic, 2017. "Sustainable intensification of Brazilian livestock production through optimized pasture restoration," Agricultural Systems, Elsevier, vol. 153(C), pages 201-211.
    20. Alexandre C. Köberle & Vassilis Daioglou & Pedro Rochedo & André F. P. Lucena & Alexandre Szklo & Shinichiro Fujimori & Thierry Brunelle & Etsushi Kato & Alban Kitous & Detlef P. Vuuren & Roberto Scha, 2022. "Can global models provide insights into regional mitigation strategies? A diagnostic model comparison study of bioenergy in Brazil," Climatic Change, Springer, vol. 170(1), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6656-:d:400297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.