IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4162-d1080095.html
   My bibliography  Save this article

Additive Tannins in Ruminant Nutrition: An Alternative to Achieve Sustainability in Animal Production

Author

Listed:
  • Natalia Vilas Boas Fonseca

    (Department of Animal Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil)

  • Abmael da Silva Cardoso

    (Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA)

  • Angélica Santos Rabelo de Souza Bahia

    (Department of Animal Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil)

  • Juliana Duarte Messana

    (Department of Animal Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil)

  • Eduardo Festozo Vicente

    (Department of Biosystems Engineering, São Paulo State University, Tupa 17602-496, SP, Brazil)

  • Ricardo Andrade Reis

    (Department of Animal Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil)

Abstract

Sustainable intensification involves maintaining ecosystem balance and increasing productivity per animal per unit area. Phytogenic additives can be used as an alternative to achieve sustainable intensification. Tannins are phenolic compounds present in plants that are classified according to their chemical structure into hydrolyzable and condensed compounds. When added to ruminant diets, condensed tannins exert effects on rumen fermentation, such as a reduction in rumen protein degradation and enteric methane production per unit of dry matter ingested, and may also improve weight gain. The advantage of this mechanism is that it increases dietary protein utilization, reduces nitrogen excretion in urine, and reduces nitrous oxide emissions. However, the positive effects of these compounds as nutritional additives require further investigation. Therefore, the objective of this review is to demonstrate the results hitherto known of the use of condensed tannins in ruminant nutrition. The use of tannins can result in both positive and negative effects, depending on the sources and doses administered.

Suggested Citation

  • Natalia Vilas Boas Fonseca & Abmael da Silva Cardoso & Angélica Santos Rabelo de Souza Bahia & Juliana Duarte Messana & Eduardo Festozo Vicente & Ricardo Andrade Reis, 2023. "Additive Tannins in Ruminant Nutrition: An Alternative to Achieve Sustainability in Animal Production," Sustainability, MDPI, vol. 15(5), pages 1-11, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4162-:d:1080095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. André Pastori D’Aurea & Abmael da Silva Cardoso & Yuri Santa Rosa Guimarães & Lauriston Bertelli Fernandes & Luis Eduardo Ferreira & Ricardo Andrade Reis, 2021. "Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management," Sustainability, MDPI, vol. 13(13), pages 1-9, June.
    2. José Felipe Orzuna-Orzuna & Griselda Dorantes-Iturbide & Alejandro Lara-Bueno & Germán David Mendoza-Martínez & Luis Alberto Miranda-Romero & Pedro Abel Hernández-García, 2021. "Effects of Dietary Tannins’ Supplementation on Growth Performance, Rumen Fermentation, and Enteric Methane Emissions in Beef Cattle: A Meta-Analysis," Sustainability, MDPI, vol. 13(13), pages 1-27, July.
    3. Ronyatta Weich Teobaldo & Abmael da Silva Cardoso & Thais Ribeiro Brito & Rhaony Gonçalves Leite & Eliéder Prates Romanzini & Yury Tatiana Granja-Salcedo & Ricardo Andrade Reis, 2022. "Response of Phytogenic Additives on Enteric Methane Emissions and Animal Performance of Nellore Bulls Raised in Grassland," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    4. Cardoso, Abmael S. & Berndt, Alexandre & Leytem, April & Alves, Bruno J.R. & de Carvalho, Isabel das N.O. & de Barros Soares, Luis Henrique & Urquiaga, Segundo & Boddey, Robert M., 2016. "Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use," Agricultural Systems, Elsevier, vol. 143(C), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ymène Fouli & Margot Hurlbert & Roland Kröbel, 2021. "Greenhouse Gas Emissions From Canadian Agriculture: Estimates and Measurements," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 14(35), November.
    2. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    3. Adriane Terezinha Schneider & Rosangela Rodrigues Dias & Mariany Costa Deprá & Darissa Alves Dutra & Richard Luan Silva Machado & Cristiano Ragagnin de Menezes & Leila Queiroz Zepka & Eduardo Jacob-Lo, 2024. "The Intersectionality Between Amazon and Commodities Production: A Close Look at Sustainability," Land, MDPI, vol. 13(10), pages 1-18, October.
    4. André Pastori D’Aurea & Abmael da Silva Cardoso & Yuri Santa Rosa Guimarães & Lauriston Bertelli Fernandes & Luis Eduardo Ferreira & Ricardo Andrade Reis, 2021. "Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management," Sustainability, MDPI, vol. 13(13), pages 1-9, June.
    5. Mosnier, Claire & Duclos, Anne & Agabriel, Jacques & Gac, Armelle, 2017. "Orfee: A bio-economic model to simulate integrated and intensive management of mixed crop-livestock farms and their greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 157(C), pages 202-215.
    6. Dakpo, K Hervé & Latruffe, Laure, 2016. "Agri-environmental subsidies and French suckler cow farms’ technical efficiency accounting for GHGs," Working Papers 245192, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    7. Dumas, Patrice & Wirsenius, Stefan & Searchinger, Tim & Andrieu, Nadine & Vogt-Schilb, Adrien, 2022. "Options to achieve net-zero emissions from agriculture and land use changes in Latin America and the Caribbean," IDB Publications (Working Papers) 12385, Inter-American Development Bank.
    8. Augusto Mussi Alvim & Eduardo Rodrigues Sanguinet, 2021. "Climate Change Policies and the Carbon Tax Effect on Meat and Dairy Industries in Brazil," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    9. Calvano, Maria Paula Cavuto Abrão & Brumatti, Ricardo Carneiro & Barros, Jacqueline Cavalcante & Garcia, Marcos Valério & Martins, Kauê Rodriguez & Andreotti, Renato, 2021. "Bioeconomic simulation of Rhipicephalus microplus infestation in different beef cattle production systems in the Brazilian Cerrado," Agricultural Systems, Elsevier, vol. 194(C).
    10. Maciel, Isabella C.F. & Barbosa, Fabiano A. & Alves, Bruno J.R. & Alvarenga, Ramon C. & Tomich, Thierry R. & Campanha, Mônica M. & Rowntree, Jason E. & Alves, Filipe C. & Lana, Ângela M.Q., 2021. "Nitrous oxide and methane emissions from beef cattle excreta deposited on feedlot pen surface in tropical conditions," Agricultural Systems, Elsevier, vol. 187(C).
    11. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    12. Alexandre C. Köberle & Pedro R. R. Rochedo & André F. P. Lucena & Alexandre Szklo & Roberto Schaeffer, 2020. "Brazil’s emission trajectories in a well-below 2 °C world: the role of disruptive technologies versus land-based mitigation in an already low-emission energy system," Climatic Change, Springer, vol. 162(4), pages 1823-1842, October.
    13. Monjardino, Marta & Loi, Angelo & Thomas, Dean T. & Revell, Clinton K. & Flohr, Bonnie M. & Llewellyn, Rick S. & Norman, Hayley C., 2022. "Improved legume pastures increase economic value, resilience and sustainability of crop-livestock systems," Agricultural Systems, Elsevier, vol. 203(C).
    14. Pedro Henrique Presumido & Fernando Sousa & Artur Gonçalves & Tatiane Cristina Dal Bosco & Manuel Feliciano, 2018. "Environmental Impacts of the Beef Production Chain in the Northeast of Portugal Using Life Cycle Assessment," Agriculture, MDPI, vol. 8(10), pages 1-19, October.
    15. Patrice Dumas & Stefan Wirsenius & Tim Searchinger & Nadine Andrieu & Adrien Vogt-Schilb, 2022. "Options to achieve net - zero emissions from agriculture and land use changes in Latin America and the Caribbean," Post-Print halshs-03760573, HAL.
    16. Costa Jr., Newton Borges da & Baldissera, Tiago Celso & Pinto, Cassiano Eduardo & Garagorry, Fabio Cervo & Moraes, Aníbal de & Carvalho, Paulo César de Faccio, 2019. "Public policies for low carbon emission agriculture foster beef cattle production in southern Brazil," Land Use Policy, Elsevier, vol. 80(C), pages 269-273.
    17. de Oliveira Silva, Rafael & Barioni, Luis Gustavo & Hall, J. A. Julian & Moretti, Antonio Carlos & Fonseca Veloso, Rui & Alexander, Peter & Crespolini, Mariane & Moran, Dominic, 2017. "Sustainable intensification of Brazilian livestock production through optimized pasture restoration," Agricultural Systems, Elsevier, vol. 153(C), pages 201-211.
    18. Alexandre C. Köberle & Vassilis Daioglou & Pedro Rochedo & André F. P. Lucena & Alexandre Szklo & Shinichiro Fujimori & Thierry Brunelle & Etsushi Kato & Alban Kitous & Detlef P. Vuuren & Roberto Scha, 2022. "Can global models provide insights into regional mitigation strategies? A diagnostic model comparison study of bioenergy in Brazil," Climatic Change, Springer, vol. 170(1), pages 1-31, January.
    19. Gianetti, Giovani William & Filho, Joaquim Bento de Souza Ferreira, 2024. "Pasture recovery, emissions, and the Brazilian Paris agreement commitments," Land Use Policy, Elsevier, vol. 141(C).
    20. Abmael da Silva Cardoso & Rondineli Pavezzi Barbero & Eliéder Prates Romanzini & Ronyatta Weich Teobaldo & Fernando Ongaratto & Marcia Helena Machado da Rocha Fernandes & Ana Cláudia Ruggieri & Ricard, 2020. "Intensification: A Key Strategy to Achieve Great Animal and Environmental Beef Cattle Production Sustainability in Brachiaria Grasslands," Sustainability, MDPI, vol. 12(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4162-:d:1080095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.