IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v153y2017icp201-211.html
   My bibliography  Save this article

Sustainable intensification of Brazilian livestock production through optimized pasture restoration

Author

Listed:
  • de Oliveira Silva, Rafael
  • Barioni, Luis Gustavo
  • Hall, J. A. Julian
  • Moretti, Antonio Carlos
  • Fonseca Veloso, Rui
  • Alexander, Peter
  • Crespolini, Mariane
  • Moran, Dominic

Abstract

Grassland degradation compromises the profitability of Brazilian livestock production, and pasture recovery is a promising strategy for sustainable intensification of agriculture (SAI). Recovery increases carbon sequestration into the soil and can potentially avoid deforestation; thereby reducing emissions intensity (EI), but only at increased investment cost per unit of area. We develop a multi-period linear programming (LP) model for grazing beef production planning to represent a typical Cerrado stocking and finishing beef farm. We compare economic and environmental performance of two alternative optimized pasture management approaches relative to the traditional practice (TRP), which is based on restoring pasture after a full degradation cycle of 8years. The scenarios considered the difference made by access to subsidized credit through the Low Carbon Agriculture program (“Programa ABC”). The model estimates EI using upstream life cycle assessment (LCA), and dynamically estimates soil organic carbon (SOC) changes as a function of pasture management. The results show net present values (NPV) ranging from −67 Brazilian reals per hectare-year (R$·ha−1·yr−1) to around 300 R$·ha−1·yr−1, respectively for traditional and optimized pasture management strategies. Estimated EI of the TRP is 9.26 kgCO2 equivalent per kg of carcass weight equivalent (kgCO2e/kg CWE) relative to 3.59kgCO2e/kg CWE for optimized management. Highest emission abatement results from improved SOC sequestration, while access to credit could further reduce EI by around 20%. We consider the effects of alternative credit interest on both NPV and EI. The results provide evidence to inform the design of Brazil's key domestic policy incentive for low carbon agriculture, which is an important component of the country's Intended Nationally Determined Contributions (INDC) on emissions mitigation. The results also contribute to the global debate on the interpretation of SAI.

Suggested Citation

  • de Oliveira Silva, Rafael & Barioni, Luis Gustavo & Hall, J. A. Julian & Moretti, Antonio Carlos & Fonseca Veloso, Rui & Alexander, Peter & Crespolini, Mariane & Moran, Dominic, 2017. "Sustainable intensification of Brazilian livestock production through optimized pasture restoration," Agricultural Systems, Elsevier, vol. 153(C), pages 201-211.
  • Handle: RePEc:eee:agisys:v:153:y:2017:i:c:p:201-211
    DOI: 10.1016/j.agsy.2017.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16303845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martha, Geraldo B. & Alves, Eliseu & Contini, Elisio, 2012. "Land-saving approaches and beef production growth in Brazil," Agricultural Systems, Elsevier, vol. 110(C), pages 173-177.
    2. de Oliveira Silva, Rafael & Barioni, Luis G. & Albertini, Tiago Zanett & Eory, Vera & Topp, Cairistiona F.E. & Fernandes, Fernando A. & Moran, Dominic, 2015. "Developing a nationally appropriate mitigation measure from the greenhouse gas GHG abatement potential from livestock production in the Brazilian Cerrado," Agricultural Systems, Elsevier, vol. 140(C), pages 48-55.
    3. Andrés Weintraub & Carlos Romero, 2006. "Operations Research Models and the Management of Agricultural and Forestry Resources: A Review and Comparison," Interfaces, INFORMS, vol. 36(5), pages 446-457, October.
    4. Cardoso, Abmael S. & Berndt, Alexandre & Leytem, April & Alves, Bruno J.R. & de Carvalho, Isabel das N.O. & de Barros Soares, Luis Henrique & Urquiaga, Segundo & Boddey, Robert M., 2016. "Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use," Agricultural Systems, Elsevier, vol. 143(C), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monjardino, Marta & Loi, Angelo & Thomas, Dean T. & Revell, Clinton K. & Flohr, Bonnie M. & Llewellyn, Rick S. & Norman, Hayley C., 2022. "Improved legume pastures increase economic value, resilience and sustainability of crop-livestock systems," Agricultural Systems, Elsevier, vol. 203(C).
    2. De Oliveira Silva, Rafael & Barioni, Luis Gustavo & Queiroz Pellegrino, Giampaolo & Moran, Dominic, 2018. "The role of agricultural intensification in Brazil's Nationally Determined Contribution on emissions mitigation," Agricultural Systems, Elsevier, vol. 161(C), pages 102-112.
    3. Alexandre C. Köberle & Vassilis Daioglou & Pedro Rochedo & André F. P. Lucena & Alexandre Szklo & Shinichiro Fujimori & Thierry Brunelle & Etsushi Kato & Alban Kitous & Detlef P. Vuuren & Roberto Scha, 2022. "Can global models provide insights into regional mitigation strategies? A diagnostic model comparison study of bioenergy in Brazil," Climatic Change, Springer, vol. 170(1), pages 1-31, January.
    4. Bonaudo, Thierry & Piraux, Marc & Gameiro, Augusto Hauber, 2021. "Analysing intensification, autonomy and efficiencies of livestock production through nitrogen flows: A case study of an emblematic Amazonian territory," Agricultural Systems, Elsevier, vol. 190(C).
    5. Pontes, Laíse da Silveira & Porfírio-da-Silva, Vanderley & Moletta, José Luiz & Telles, Tiago Santos, 2021. "Long-term profitability of crop-livestock systems, with and without trees," Agricultural Systems, Elsevier, vol. 192(C).
    6. Coser, Thais Rodrigues & de Figueiredo, Cícero Célio & Jovanovic, Boban & Moreira, Túlio Nascimento & Leite, Gilberto Gonçalves & Cabral Filho, Sergio Lucio Salomon & Kato, Eiyti & Malaquias, Juaci Vi, 2018. "Short-term buildup of carbon from a low-productivity pastureland to an agrisilviculture system in the Brazilian savannah," Agricultural Systems, Elsevier, vol. 166(C), pages 184-195.
    7. Tarik Tanure & Rafael Faria de Abreu Campos & Júlio César Reis & Rayna Benzeev & Peter Newton & Renato Aragão Ribeiro Rodrigues & Ana Maria Hermeto Camilo de Oliveira, 2024. "Farmers’ perceptions of climate change affect their adoption of sustainable agricultural technologies in the Brazilian Amazon and Atlantic Forest biomes," Climatic Change, Springer, vol. 177(1), pages 1-24, January.
    8. Erasmus K.H.J. Zu Ermgassen & Melquesedek Pereira de Alcântara & Andrew Balmford & Luis Barioni & Francisco Beduschi Neto & Murilo M. F. Bettarello & Genivaldo De Brito & Gabriel C. Carrero & Eduardo , 2018. "Results from On-The-Ground Efforts to Promote Sustainable Cattle Ranching in the Brazilian Amazon," Sustainability, MDPI, vol. 10(4), pages 1-26, April.
    9. Otavio Cavalett & Sigurd Norem Slettmo & Francesco Cherubini, 2018. "Energy and Environmental Aspects of Using Eucalyptus from Brazil for Energy and Transportation Services in Europe," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    10. Alexandra Sintori & Angelos Liontakis & Irene Tzouramani, 2019. "Assessing the Environmental Efficiency of Greek Dairy Sheep Farms: GHG Emissions and Mitigation Potential," Agriculture, MDPI, vol. 9(2), pages 1-14, February.
    11. Gori Maia, Alexandre & Eusebio, Gabriela dos Santos & Fasiaben, Maria do Carmo Ramos & Moraes, Andre Steffens & Assad, Eduardo Delgado & Pugliero, Vanessa Silva, 2021. "The economic impacts of the diffusion of agroforestry in Brazil," Land Use Policy, Elsevier, vol. 108(C).
    12. Pedro Luan Ferreira da Silva & Flávio Pereira de Oliveira & Walter Esfrain Pereira & Adriana Ferreira Martins & Camila Costa da Nóbrega & Danillo Dutra Tavares & Igor Gabriel dos Santos Oliveira Bot, 2020. "The Influence of Oxisol Physics Parameters on Dry Matter Production in Grasses of Brachiaria Genus," Journal of Agricultural Studies, Macrothink Institute, vol. 8(2), pages 265-283, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Oliveira Silva, Rafael & Barioni, Luis Gustavo & Queiroz Pellegrino, Giampaolo & Moran, Dominic, 2018. "The role of agricultural intensification in Brazil's Nationally Determined Contribution on emissions mitigation," Agricultural Systems, Elsevier, vol. 161(C), pages 102-112.
    2. Gianetti, Giovani William & Filho, Joaquim Bento de Souza Ferreira, 2024. "Pasture recovery, emissions, and the Brazilian Paris agreement commitments," Land Use Policy, Elsevier, vol. 141(C).
    3. Venn, Tyron J. & Dorries, Jack W. & McGavin, Robert L., 2021. "A mathematical model to support investment in veneer and LVL manufacturing in subtropical eastern Australia," Forest Policy and Economics, Elsevier, vol. 128(C).
    4. Benjamin T. Phalan, 2018. "What Have We Learned from the Land Sparing-sharing Model?," Sustainability, MDPI, vol. 10(6), pages 1-24, May.
    5. Ymène Fouli & Margot Hurlbert & Roland Kröbel, 2021. "Greenhouse Gas Emissions From Canadian Agriculture: Estimates and Measurements," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 14(35), November.
    6. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    7. Zanetti De Lima, C. & Gurgel, A. & Teixeira, E.C., 2018. "Synergies of low-carbon technologies and land-sparing in Brazilian regions," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277091, International Association of Agricultural Economists.
    8. André Pastori D’Aurea & Abmael da Silva Cardoso & Yuri Santa Rosa Guimarães & Lauriston Bertelli Fernandes & Luis Eduardo Ferreira & Ricardo Andrade Reis, 2021. "Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management," Sustainability, MDPI, vol. 13(13), pages 1-9, June.
    9. Mustapha Ouhimmou & Sophie D'Amours & Robert Beauregard & Daoud Ait-Kadi & Satyaveer Singh Chauhan, 2009. "Optimization Helps Shermag Gain Competitive Edge," Interfaces, INFORMS, vol. 39(4), pages 329-345, August.
    10. Zhang, Congying & Xiang, Jingru & Chang, Qian, 2023. "Does Informatization Cause the Relative Substitution Bias of Agricultural Machinery Inputs for Labor Inputs? Evidence from Apple Farmers in China," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 4(3), September.
    11. Mosnier, Claire & Duclos, Anne & Agabriel, Jacques & Gac, Armelle, 2017. "Orfee: A bio-economic model to simulate integrated and intensive management of mixed crop-livestock farms and their greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 157(C), pages 202-215.
    12. Jonathan Gonçalves Da Silva & Joaquim Bento De Souza Ferreira Filho, 2016. "Climate Change, Agriculture And Livestock Intensification In Brazil: The Borlaug Hypothesis," Anais do XLIII Encontro Nacional de Economia [Proceedings of the 43rd Brazilian Economics Meeting] 184, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    13. Söder, Mareike, 2014. "EU biofuel policies in practice: A carbon map for the Brazilian Cerrado," Kiel Working Papers 1966, Kiel Institute for the World Economy (IfW Kiel).
    14. Andrew P. Barnes & Amanda Lucas & Gregory Maio, 2016. "Quantifying ambivalence towards sustainable intensification: an exploration of the UK public’s values," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 609-619, June.
    15. Dakpo, K Hervé & Latruffe, Laure, 2016. "Agri-environmental subsidies and French suckler cow farms’ technical efficiency accounting for GHGs," Working Papers 245192, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    16. Dumas, Patrice & Wirsenius, Stefan & Searchinger, Tim & Andrieu, Nadine & Vogt-Schilb, Adrien, 2022. "Options to achieve net-zero emissions from agriculture and land use changes in Latin America and the Caribbean," IDB Publications (Working Papers) 12385, Inter-American Development Bank.
    17. Notte, Gastón & Cancela, Héctor & Pedemonte, Martín & Chilibroste, Pablo & Rossing, Walter & Groot, Jeroen C.J., 2020. "A multi-objective optimization model for dairy feeding management," Agricultural Systems, Elsevier, vol. 183(C).
    18. Notte, Gastón & Pedemonte, Martín & Cancela, Héctor & Chilibroste, Pablo, 2016. "Resource allocation in pastoral dairy production systems: Evaluating exact and genetic algorithms approaches," Agricultural Systems, Elsevier, vol. 148(C), pages 114-123.
    19. Bisera Andria Gusavac & Dragana Stojanovic & Zeljko Sokolovic, 2014. "Application Of Some Locational Models in Natural Resources Industry – Agriculture Case," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 62(8), pages 82-93, August.
    20. de Oliveira Silva, Rafael & Barioni, Luis G. & Albertini, Tiago Zanett & Eory, Vera & Topp, Cairistiona F.E. & Fernandes, Fernando A. & Moran, Dominic, 2015. "Developing a nationally appropriate mitigation measure from the greenhouse gas GHG abatement potential from livestock production in the Brazilian Cerrado," Agricultural Systems, Elsevier, vol. 140(C), pages 48-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:153:y:2017:i:c:p:201-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.