IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7224-d1266066.html
   My bibliography  Save this article

Transition to Sustainable Energy System for Smart Cities—Literature Review

Author

Listed:
  • Magdalena Krystyna Wyrwicka

    (Faculty of Engineering Management, Poznan University of Technology, 60-965 Poznan, Poland)

  • Ewa Więcek-Janka

    (Faculty of Engineering Management, Poznan University of Technology, 60-965 Poznan, Poland)

  • Łukasz Brzeziński

    (Faculty of Management and Logistics, Poznan School of Logistics, 61-755 Poznan, Poland)

Abstract

The article will contain a scientific analysis, showing thematic links between publications and consist of searching the data in the Scopus database. The timeframe of the searched publications will be 2010–2022. The parameters should also be narrowed down by selecting the following indexes: Science Citation Index Expanded (SCI-E), Social Science Citation Index (SSCI) and Emerging Sources Citation Index (ESCI), which was intended to eliminate abstracts of books and conference materials, leaving only reviewed works with the highest level of relevance for furthering knowledge. An additional limit of five minimum citations will be introduced. The analysis included 342 articles. Texts cited at least 100 times were highlighted. The research showed that authors focus piecemeal on selected aspects or problems, so an attempt was made to show thematic connections of keywords, illustrating the complexity of the transformations underway. The discussion identifies the most active authors and countries, especially exploring the topic of a transition to a sustainable energy system for smart cities. The authors have employed scientometric analysis to provide an objective and data-driven exploration of the transformation of sustainable energy systems for smart cities. This approach offers valuable insights into the research landscape, trends, and relationships within the field, which can guide future scientific research and contribute to a deeper understanding of the subject matter. As an additional element of this conclusion, the authors proposed supplementing the scientometric analysis with the foresight methodology. The authors’ research approach is distinguished by the following stages: problem formulation, data collection, choice of scientometric methodology, analysis of advantages and limitations of scientometrics, clustering analysis, data analysis, and presentation of results. Our systematic literature review systematizes the existing literature on the sustainable energy systems for smart cities, isolates main research interests, identifies future research avenues, and provides several important hints for researchers.

Suggested Citation

  • Magdalena Krystyna Wyrwicka & Ewa Więcek-Janka & Łukasz Brzeziński, 2023. "Transition to Sustainable Energy System for Smart Cities—Literature Review," Energies, MDPI, vol. 16(21), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7224-:d:1266066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Margarita Angelidou, 2017. "The Role of Smart City Characteristics in the Plans of Fifteen Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(4), pages 3-28, October.
    2. Seung-Min Jung & Sungwoo Park & Seung-Won Jung & Eenjun Hwang, 2020. "Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    3. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    4. Daniel van den Buuse & Willem van Winden & Wieke Schrama, 2021. "Balancing Exploration and Exploitation in Sustainable Urban Innovation: An Ambidexterity Perspective toward Smart Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 28(1-2), pages 175-197, April.
    5. Daniel Icaza & David Borge-Diez & Santiago Pulla Galindo & Carlos Flores-Vázquez, 2023. "Analysis of Smart Energy Systems and High Participation of V2G Impact for the Ecuadorian 100% Renewable Energy System by 2050," Energies, MDPI, vol. 16(10), pages 1-24, May.
    6. Aleksandra Lewandowska & Justyna Chodkowska-Miszczuk & Krzysztof Rogatka & Tomasz Starczewski, 2020. "Smart Energy in a Smart City: Utopia or Reality? Evidence from Poland," Energies, MDPI, vol. 13(21), pages 1-19, November.
    7. Butturi, M.A. & Lolli, F. & Sellitto, M.A. & Balugani, E. & Gamberini, R. & Rimini, B., 2019. "Renewable energy in eco-industrial parks and urban-industrial symbiosis: A literature review and a conceptual synthesis," Applied Energy, Elsevier, vol. 255(C).
    8. Min-Hwi Kim & Deuk-Won Kim & Dong-Won Lee, 2021. "Feasibility of Low Carbon Renewable Energy City Integrated with Hybrid Renewable Energy Systems," Energies, MDPI, vol. 14(21), pages 1-24, November.
    9. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    10. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    11. Babonneau, Frédéric & Caramanis, Michael & Haurie, Alain, 2016. "A linear programming model for power distribution with demand response and variable renewable energy," Applied Energy, Elsevier, vol. 181(C), pages 83-95.
    12. Vernay, Anne-Lorène & Sebi, Carine & Arroyo, Fabrice, 2023. "Energy community business models and their impact on the energy transition: Lessons learnt from France," Energy Policy, Elsevier, vol. 175(C).
    13. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    14. Diana Hicks & Paul Wouters & Ludo Waltman & Sarah de Rijcke & Ismael Rafols, 2015. "Bibliometrics: The Leiden Manifesto for research metrics," Nature, Nature, vol. 520(7548), pages 429-431, April.
    15. Laura Serrano & Antonio Sianes & Antonio Ariza-Montes, 2019. "Using Bibliometric Methods to Shed Light on the Concept of Sustainable Tourism," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    16. Nurkhat Zhakiyev & Aigerim Kalenova & Ayagoz Khamzina, 2022. "The Energy Sector of the Capital of Kazakhstan: Status Quo and Policy towards Smart City," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 414-423, July.
    17. Adele Parmentola & Antonella Petrillo & Ilaria Tutore & Fabio De Felice, 2022. "Is blockchain able to enhance environmental sustainability? A systematic review and research agenda from the perspective of Sustainable Development Goals (SDGs)," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 194-217, January.
    18. Mahnoosh Hassankhani & Mehdi Alidadi & Ayyoob Sharifi & Abolghasem Azhdari, 2021. "Smart City and Crisis Management: Lessons for the COVID-19 Pandemic," IJERPH, MDPI, vol. 18(15), pages 1-18, July.
    19. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Éva Greutter-Gregus & Gábor Koncz & Kitti Némedi-Kollár, 2024. "Resource Efficiency and the Role of Renewable Energy in Miskolc: The City’s Journey Towards Becoming a Smart City," Energies, MDPI, vol. 17(21), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Hu & Qinghai Chen & Tingting Yang & Chuanjian Yi & Jing Chen, 2024. "Visualization and Analysis of Hotspots and Trends in Seafood Cold Chain Logistics Based on CiteSpace, VOSviewer, and RStudio Bibliometrix," Sustainability, MDPI, vol. 16(15), pages 1-22, July.
    2. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    3. Paulina Golinska-Dawson & Kanchana Sethanan, 2023. "Sustainable Urban Freight for Energy-Efficient Smart Cities—Systematic Literature Review," Energies, MDPI, vol. 16(6), pages 1-28, March.
    4. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    5. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    6. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    7. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    8. Luis Araya-Castillo & Felipe Hernández-Perlines & Hugo Moraga & Antonio Ariza-Montes, 2021. "Scientometric Analysis of Research on Socioemotional Wealth," Sustainability, MDPI, vol. 13(7), pages 1-26, March.
    9. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    10. Duan, Zhengxiao & Zhang, Yanni & Deng, Jun & Shu, Pan & Yao, Di, 2023. "A systematic exploration of mapping knowledge domains for free radical research related to coal," Energy, Elsevier, vol. 282(C).
    11. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    12. Ángel Acevedo-Duque & Alejandro Vega-Muñoz & Guido Salazar-Sepúlveda, 2020. "Analysis of Hospitality, Leisure, and Tourism Studies in Chile," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    13. Zhichao Wang & Bao Hoang Nguyen & Valentin Zelenyuk, 2024. "Performance analysis of hospitals in Australia and its peers: a systematic and critical review," Journal of Productivity Analysis, Springer, vol. 62(2), pages 139-173, October.
    14. Mehdi Toloo & Rouhollah Khodabandelou & Amar Oukil, 2022. "A Comprehensive Bibliometric Analysis of Fractional Programming (1965–2020)," Mathematics, MDPI, vol. 10(11), pages 1-21, May.
    15. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    16. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    17. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    18. Zhigao Liu & Yimei Yin & Weidong Liu & Michael Dunford, 2015. "Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 135-158, April.
    19. Dušan Nikolić & Dragan Ivanović & Lidija Ivanović, 2024. "An open-source tool for merging data from multiple citation databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4573-4595, July.
    20. Hamid Darvish & Yaşar Tonta, 2016. "Diffusion of nanotechnology knowledge in Turkey and its network structure," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 569-592, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7224-:d:1266066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.