IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5500-d381772.html
   My bibliography  Save this article

Response of Water Quality to Landscape Patterns in an Urbanized Watershed in Hangzhou, China

Author

Listed:
  • Yu Song

    (Institute of Remote Sensing and Earth Sciences (IRSE), College of Science, Hangzhou Normal University, Hangzhou 311121, China
    Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China)

  • Xiaodong Song

    (College of Geomatics & Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Guofan Shao

    (Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA)

Abstract

Intense human activities and drastic land use changes in rapidly urbanized areas may cause serious water quality degradation. In this study, we explored the effects of land use on water quality from a landscape perspective. We took a rapidly urbanized area in Hangzhou City, China, as a case study, and collected stream water quality data and algae biomass in a field campaign. The results showed that built-up lands had negative effects on water quality and were the primary cause of stream water pollution. The concentration of total phosphorus significantly correlated with the areas of residential, industrial, road, and urban greenspace, and the concentration of chlorophyll a also significantly correlated with the areas of these land uses, except residential land. At a landscape level, the correlation analysis showed that the landscape indices, e.g., dominance, shape complexity, fragmentation, aggregation, and diversity, all had significant correlations with water quality parameters. From the perspective of land use, the redundancy analysis results showed that the percentages of variation in water quality explained by the built-up, forest and wetland, cropland, and bareland decreased in turn. The spatial composition of the built-up lands was the main factor causing stream water pollution, while the shape complexities of the forest and wetland patches were negatively correlated with stream water pollution.

Suggested Citation

  • Yu Song & Xiaodong Song & Guofan Shao, 2020. "Response of Water Quality to Landscape Patterns in an Urbanized Watershed in Hangzhou, China," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5500-:d:381772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaiyan Zhao & Huawu Wu & Wen Chen & Wei Sun & Haixia Zhang & Weili Duan & Wenjun Chen & Bin He, 2020. "Impacts of Landscapes on Water Quality in A Typical Headwater Catchment, Southeastern China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    2. Azam Haidary & Bahman Amiri & Jan Adamowski & Nicola Fohrer & Kaneyuki Nakane, 2013. "Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2217-2229, May.
    3. Yuncai Wang & Jiake Shen & Wentao Yan & Chundi Chen, 2019. "Effects of Landscape Development Intensity on River Water Quality in Urbanized Areas," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    4. Yu Song & Guofan Shao & Xiaodong Song & Yong Liu & Lei Pan & Hong Ye, 2017. "The Relationships between Urban Form and Urban Commuting: An Empirical Study in China," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    2. Nametso Matomela & Tianxin Li & Peng Zhang & Harrison Odion Ikhumhen & Namir Domingos Raimundo Lopes, 2023. "Role of Landscape and Land-Use Transformation on Nonpoint Source Pollution and Runoff Distribution in the Dongsheng Basin, China," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    3. Ning Huang & Tao Lin & Junjie Guan & Guoqin Zhang & Xiaoying Qin & Jiangfu Liao & Qiming Liu & Yunfeng Huang, 2021. "Identification and Regulation of Critical Source Areas of Non-Point Source Pollution in Medium and Small Watersheds Based on Source-Sink Theory," Land, MDPI, vol. 10(7), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Li & Qidi Yu & Ling Gao & Bin Yu & Zhipeng Lu, 2021. "The Effect of Urban Land-Use Change on Runoff Water Quality: A Case Study in Hangzhou City," IJERPH, MDPI, vol. 18(20), pages 1-12, October.
    2. Afed U. Khan & Jiping Jiang & Ashish Sharma & Peng Wang & Jehanzeb Khan, 2017. "How Do Terrestrial Determinants Impact the Response of Water Quality to Climate Drivers?—An Elasticity Perspective on the Water–Land–Climate Nexus," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    3. Yuncai Wang & Jiake Shen & Wentao Yan & Chundi Chen, 2019. "Effects of Landscape Development Intensity on River Water Quality in Urbanized Areas," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    4. Mirzaei, Mohsen & Jafari, Ali & Gholamalifard, Mehdi & Azadi, Hossein & Shooshtari, Sharif Joorabian & Moghaddam, Saghi Movahhed & Gebrehiwot, Kindeya & Witlox, Frank, 2020. "Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover," Land Use Policy, Elsevier, vol. 95(C).
    5. Laima Česonienė & Daiva Šileikienė & Midona Dapkienė, 2021. "Influence of Anthropogenic Load in River Basins on River Water Status: A Case Study in Lithuania," Land, MDPI, vol. 10(12), pages 1-16, November.
    6. Mário David Sequeira & Ana Castilho & Alexandre Oliveira Tavares & Pedro Dinis, 2022. "The Rural Fires of 2017 and Their Influences on Water Quality: An Assessment of Causes and Effects," IJERPH, MDPI, vol. 20(1), pages 1-12, December.
    7. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.
    8. Mei Zhang & Jia Tang & Jun Gao, 2023. "Examining the Effects of Built Environments and Individual Characteristics on Commuting Time under Spatial Heterogeneity: An Empirical Study in China Using HLM," Land, MDPI, vol. 12(8), pages 1-20, August.
    9. Love Kumar & Ramna Kumari & Avinash Kumar & Imran Aziz Tunio & Claudio Sassanelli, 2023. "Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review," Sustainability, MDPI, vol. 15(7), pages 1-38, April.
    10. Shirin Karimi & Bahman Jabbarian Amiri & Arash Malekian, 2019. "Similarity Metrics-Based Uncertainty Analysis of River Water Quality Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1927-1945, April.
    11. Long Zhou & Guoqiang Shen & Yao Wu & Robert Brown & Tian Chen & Chenyu Wang, 2018. "Urban Form, Growth, and Accessibility in Space and Time: Anatomy of Land Use at the Parcel-Level in a Small to Medium-Sized American City," Sustainability, MDPI, vol. 10(12), pages 1-24, December.
    12. Jeong, Hanseok & Adamowski, Jan, 2016. "A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale," Agricultural Water Management, Elsevier, vol. 171(C), pages 89-107.
    13. Ye Pan & Yuan Yuan & Ting Sun & Yuxin Wang & Yujing Xie & Zhengqiu Fan, 2020. "Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route," IJERPH, MDPI, vol. 17(17), pages 1-21, September.
    14. Jerry Zhirong Zhao & Shengnan Lou & Camila Fonseca & Richard Feiock & Ruowen Shen, 2021. "Explaining transit expenses in US urbanised areas: Urban scale, spatial form and fiscal capacity," Urban Studies, Urban Studies Journal Limited, vol. 58(2), pages 280-296, February.
    15. Poklewski-Koziełł, Damian & Dudzic-Gyurkovich, Karolina & Duarte, Carlos Marmolejo, 2023. "Investigating urban form, and walkability measures in the new developments. The case study of Garnizon in Gdansk," Land Use Policy, Elsevier, vol. 125(C).
    16. Ran Guo & Hong Leng & Qing Yuan & Shiyi Song, 2022. "Impact of Urban Form on CO 2 Emissions under Different Socioeconomic Factors: Evidence from 132 Small and Medium-Sized Cities in China," Land, MDPI, vol. 11(5), pages 1-20, May.
    17. Jae-Young Jeong & Mi-Jeong Cho & Myeong-Hun Lee, 2022. "An Analysis of the Effect of Non-Parking Facilities in Parking-Only Buildings on the Traffic Inducement Rate," Sustainability, MDPI, vol. 14(7), pages 1-23, April.
    18. Liang Pei & Chunhui Wang & Yiping Zuo & Xiaojie Liu & Yanyan Chi, 2022. "Impacts of Land Use on Surface Water Quality Using Self-Organizing Map in Middle Region of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(17), pages 1-14, September.
    19. Varvara Nikulina & David Simon & Henrik Ny & Henrikke Baumann, 2019. "Context-Adapted Urban Planning for Rapid Transitioning of Personal Mobility towards Sustainability: A Systematic Literature Review," Sustainability, MDPI, vol. 11(4), pages 1-37, February.
    20. Ge Zhang & Subhrajit Guhathakurta & Susannah Lee & Amy Moore & Lijiao Yan, 2014. "Grid-Based Land-Use Composition and Configuration Optimization for Watershed Stormwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2867-2883, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5500-:d:381772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.