IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i7p668-d581402.html
   My bibliography  Save this article

Identification and Regulation of Critical Source Areas of Non-Point Source Pollution in Medium and Small Watersheds Based on Source-Sink Theory

Author

Listed:
  • Ning Huang

    (Department of Environmental Engineering, Jimei University, Xiamen 361021, China)

  • Tao Lin

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Junjie Guan

    (Department of Environmental Engineering, Jimei University, Xiamen 361021, China)

  • Guoqin Zhang

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Xiaoying Qin

    (Department of Environmental Engineering, Jimei University, Xiamen 361021, China)

  • Jiangfu Liao

    (Department of Software Engineering, Jimei University, Xiamen 361021, China)

  • Qiming Liu

    (Department of Environmental Engineering, Jimei University, Xiamen 361021, China)

  • Yunfeng Huang

    (Department of Environmental Engineering, Jimei University, Xiamen 361021, China)

Abstract

The identification and regulation of the critical source areas (CSAs) of non-point source (NPS) pollution have been proven as economical and effective ways to control such pollution in watersheds. However, the traditional models for the identification of CSAs have complex operation processes, and comprehensive systematic methods for the regulation of CSAs are still lacking. This study systematically developed a new methodological framework for the identification and regulation of CSAs in medium and small watersheds based on source-sink theory, which included the following: (1) a grid-based CSAs identification model involving the evaluation of the rationality of the source-sink landscape pattern and three geographical factors (landscape slope, relative elevation, and the distance from the river), and identifying CSAs by the calculation and division of the integrated grid pollution index (IGPI); (2) a comprehensive CSAs regulation strategy that was formulated based on three landscape levels/regulation intensities—including the optimization of the overall source-sink landscape pattern, the conversion of the landscape type or landscape combination, and local optimization for single source landscape—to meet various regulatory intensity requirements in watersheds. The Jiulong River watershed in Fujian Province of China was taken as a case study. The results indicate that: (1) the identified CSAs of the Jiulong River watershed covered 656.91 km 2 , equivalent to 4.44% of the watershed, and through adopting multiple-intensity regulation measures for 10 key control zones that had spatially concentrated high values of the IGPI among the CSAs, the watershed IGPIs were predicted to be generally reduced and the area of CSAs was predicted to decrease by 23.84% (31.43% in Zhangzhou, the major city in the watershed); (2) the identification model can identify the CSAs with easy data access and simple operation, and the utilization of neighborhood impact analysis makes the grid-based research more scientific in the evaluation of the rationality of the source-sink landscape pattern; (3) the application of multi-scale landscape planning framework and the principle of source-sink landscape pattern regulation make the CSAs regulation strategy systematic and cost-effective, and the provision of different intensity regulation strategies makes the regulation strategy easy to implement and relatively lower cost. The proposed methodological framework can provide technical support for governments to quickly and accurately identify the CSAs of NPS pollution and effectively control such CSAs in medium and small watersheds.

Suggested Citation

  • Ning Huang & Tao Lin & Junjie Guan & Guoqin Zhang & Xiaoying Qin & Jiangfu Liao & Qiming Liu & Yunfeng Huang, 2021. "Identification and Regulation of Critical Source Areas of Non-Point Source Pollution in Medium and Small Watersheds Based on Source-Sink Theory," Land, MDPI, vol. 10(7), pages 1-23, June.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:668-:d:581402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/7/668/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/7/668/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan Zhang & Zhilei Bi & Xin Zhang & Yang Yu, 2019. "Influence of Landscape Pattern Changes on Runoff and Sediment in the Dali River Watershed on the Loess Plateau of China," Land, MDPI, vol. 8(12), pages 1-12, November.
    2. Campos, Pedro Bueno Rocha & Almeida, Cláudia Maria de & Queiroz, Alfredo Pereira de, 2018. "Educational infrastructure and its impact on urban land use change in a peri-urban area: a cellular-automata based approach," Land Use Policy, Elsevier, vol. 79(C), pages 774-788.
    3. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    4. Yu Song & Xiaodong Song & Guofan Shao, 2020. "Response of Water Quality to Landscape Patterns in an Urbanized Watershed in Hangzhou, China," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    5. Zhang, H. & Huang, G.H., 2011. "Assessment of non-point source pollution using a spatial multicriteria analysis approach," Ecological Modelling, Elsevier, vol. 222(2), pages 313-321.
    6. Jeon, Ji-Hong & Yoon, Chun G. & Donigian, Anthony Jr. & Jung, Kwang-Wook, 2007. "Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 75-86, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanrong Lu & Chen Wang & Rongjin Yang & Meiying Sun & Le Zhang & Yuying Zhang & Xiuhong Li, 2023. "Research on the Progress of Agricultural Non-Point Source Pollution Management in China: A Review," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    2. Huang, Ning-bo & Su, Bao-lin & Li, Rui-rui & Yang, Wu-zhi & Shen, Meng-meng, 2014. "A field-scale observation method for non-point source pollution of paddy fields," Agricultural Water Management, Elsevier, vol. 146(C), pages 305-313.
    3. Qi Zhou & Yong Pang & Xue Wang & Xiao Wang & Yong Niu & Jianjian Wang, 2017. "Determination of Key Risk Supervision Areas around River-Type Water Sources Affected by Multiple Risk Sources: A Case Study of Water Sources along the Yangtze’s Nanjing Section," Sustainability, MDPI, vol. 9(2), pages 1-23, February.
    4. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    5. Magdalena Wagner & Walter Timo de Vries, 2019. "Comparative Review of Methods Supporting Decision-Making in Urban Development and Land Management," Land, MDPI, vol. 8(8), pages 1-13, August.
    6. Hao Cheng & Chen Lin & Liangjie Wang & Junfeng Xiong & Lingyun Peng & Chenxi Zhu, 2020. "The Influence of Different Forest Characteristics on Non-point Source Pollution: A Case Study at Chaohu Basin, China," IJERPH, MDPI, vol. 17(5), pages 1-19, March.
    7. Cabrini, Silvina M. & Calcaterra, Carlos P., 2016. "Modeling economic-environmental decision making for agricultural land use in Argentinean Pampas," Agricultural Systems, Elsevier, vol. 143(C), pages 183-194.
    8. Min Xia & Linyan Wang & Bo Wen & Wei Zou & Weixin Ou & Zhongqiong Qu, 2021. "Land Consolidation Zoning in Coastal Tidal Areas Based on Landscape Security Pattern: A Case Study of Dafeng District, Yancheng, Jiangsu Province, China," Land, MDPI, vol. 10(2), pages 1-13, February.
    9. Jiang, Fei & Drohan, Patrick J. & Cibin, Raj & Preisendanz, Heather E. & White, Charles M. & Veith, Tamie L., 2021. "Reallocating crop rotation patterns improves water quality and maintains crop yield," Agricultural Systems, Elsevier, vol. 187(C).
    10. Nametso Matomela & Tianxin Li & Peng Zhang & Harrison Odion Ikhumhen & Namir Domingos Raimundo Lopes, 2023. "Role of Landscape and Land-Use Transformation on Nonpoint Source Pollution and Runoff Distribution in the Dongsheng Basin, China," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    11. Antonopoulos, Vassilis Z., 2010. "Modelling of water and nitrogen balances in the ponded water and soil profile of rice fields in Northern Greece," Agricultural Water Management, Elsevier, vol. 98(2), pages 321-330, December.
    12. Yang, Shengtian & Dong, Guotao & Zheng, Donghai & Xiao, Honglin & Gao, Yunfei & Lang, Yang, 2011. "Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3701-3717.
    13. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    14. Shaoqing Wang & Yanling Zhao & He Ren & Shichao Zhu & Yunhui Yang, 2023. "Identification of Ecological Risk “Source-Sink” Landscape Functions of Resource-Based Region: A Case Study in Liaoning Province, China," Land, MDPI, vol. 12(10), pages 1-23, October.
    15. Jiahui Zhou & Peng Gao & Changxue Wu & Xingmin Mu, 2023. "Analysis of Land Use Change Characteristics and Its Driving Forces in the Loess Plateau: A Case Study in the Yan River Basin," Land, MDPI, vol. 12(9), pages 1-20, August.
    16. Ara Jeong & Ronald I. Dorn & Yeong-Bae Seong & Byung-Yong Yu, 2021. "Acceleration of Soil Erosion by Different Land Uses in Arid Lands above 10 Be Natural Background Rates: Case Study in the Sonoran Desert, USA," Land, MDPI, vol. 10(8), pages 1-28, August.
    17. Ni, Jingneng & Xu, Jiuping & Zhang, Mengxiang, 2018. "Constructed wetland modelling for watershed ecosystem protection under a certain economic load: A case study at the Chaohu Lake watershed, China," Ecological Modelling, Elsevier, vol. 368(C), pages 180-190.
    18. Kamruzzaman, Mohammad & Hwang, Syewoon & Choi, Soon-Kun & Cho, Jaepil & Song, Inhong & Jeong, Hanseok & Song, Jung-Hun & Jang, Teail & Yoo, Seung-Hwan, 2020. "Prediction of the effects of management practices on discharge and mineral nitrogen yield from paddy fields under future climate using APEX-paddy model," Agricultural Water Management, Elsevier, vol. 241(C).
    19. Mingming Deng & Qiyue Li & Wenya Li & Geying Lai & Yue Pan, 2022. "Impacts of Sand Mining Activities on the Wetland Ecosystem of Poyang Lake (China)," Land, MDPI, vol. 11(8), pages 1-13, August.
    20. Kim, Jihye & Kim, Hakkwan & Kim, Sinae & Jang, Taeil & Jun, Sang-Min & Hwang, Soonho & Song, Jung-Hun & Kang, Moon-Seong, 2022. "Development of a simulation method for paddy fields based on surface FTABLE of hydrological simulation program–FORTRAN," Agricultural Water Management, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:668-:d:581402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.