IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4400-d363849.html
   My bibliography  Save this article

Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain

Author

Listed:
  • Md Arifur Rahaman

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    The authors contributed equally to this work.)

  • Xiaoying Zhan

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    The authors contributed equally to this work.)

  • Qingwen Zhang

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Shuqin Li

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100081, China)

  • Shengmei Lv

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100081, China)

  • Yuting Long

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100081, China)

  • Hailing Zeng

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100081, China)

Abstract

Digestate and biogas slurry (BS) are the byproduct of biogas engineering that could be used for elevating plant growth. However, the consequent emissions of ammonia from BS are considered a severe threat to the atmosphere. Herein, we conducted two consecutive field experiments with wheat–maize rotations to find out the optimum ratio of BS to combine with chemical fertilizer (CF) to reduce ammonia volatilization (AV) while keeping the stable crop yield. In maize season, 226.5 kg N/ha of CF was applied. In wheat season, 226.5 kg N/ha was applied at different ratios (100%, 80%, and 50%) between BS and CF. Our results found that the maximum yield of 6250 kg/ha was produced by CF, and this yield could be obtained through a combined application of 38% BS mixed with CF. Highest AV produced of 16.08 kg/ha by CF. BS treatments significantly reduced the emission from 18% to 32% in comparison to CF. The combined application of BS-CF produced the highest yield due to essential nutrients coming from both BS-CF. Subsequently, it reduced the AV depending on fertilizer type and fertilizer rate. An optimal ratio of 38% BS was recommended to produce the highest yield and lowest ammonia emissions. The application of BS together with different ratios of CF could be an alternative agricultural strategy to obtain desired crop yield and reduce AV in North China Plain (NCP).

Suggested Citation

  • Md Arifur Rahaman & Xiaoying Zhan & Qingwen Zhang & Shuqin Li & Shengmei Lv & Yuting Long & Hailing Zeng, 2020. "Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4400-:d:363849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Du, Huiying & Gao, Wenxuan & Li, Jiajia & Shen, Shizhou & Wang, Feng & Fu, Li & Zhang, Keqiang, 2019. "Effects of digested biogas slurry applicationmixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 882-893.
    2. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    3. Shan, Linan & He, Yunfeng & Chen, Jie & Huang, Qian & Lian, Xu & Wang, Hongcai & Liu, Yili, 2015. "Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 255-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Ran & Xinlu Bai & Yan Long & Ping Ai, 2022. "Yield and Quality of Rice under the Effects of Digestate Application," Agriculture, MDPI, vol. 12(4), pages 1-10, April.
    2. Seongmin Kang & Yoonjung Hong & Moon Soon Im & Seong-Dong Kim & Eui-Chan Jeon, 2020. "Key Factors in Measuring Ammonia Emissions with Dynamic Flux Chamber in Barns," Sustainability, MDPI, vol. 12(15), pages 1-13, August.
    3. Jiao Tang & Jinzhong Yin & Anthony J. Davy & Feifei Pan & Xu Han & Shaonan Huang & Dafu Wu, 2022. "Biogas Slurry as an Alternative to Chemical Fertilizer: Changes in Soil Properties and Microbial Communities of Fluvo-Aquic Soil in the North China Plain," Sustainability, MDPI, vol. 14(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    2. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    4. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    5. Florian Rabitz & Alin Olteanu & Jurgita Jurkevičienė & Agnė Budžytė, 2021. "A topic network analysis of the system turn in the environmental sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2107-2140, March.
    6. Chengpeng Zhang & Yu Ye & Xiuqi Fang & Hansunbai Li & Xue Zheng, 2020. "Coincidence Analysis of the Cropland Distribution of Multi-Sets of Global Land Cover Products," IJERPH, MDPI, vol. 17(3), pages 1-17, January.
    7. Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2022. "A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Jie Zhang & Jia Liu & Guilong Li & Meng Wu, 2024. "Screening Potential Nitrification Inhibitors through a Structure–Activity Relationship Study—The Case of Cinnamic Acid Derivatives," Sustainability, MDPI, vol. 16(13), pages 1-10, July.
    10. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    11. Wang, Haitao & Qiu, Xuefeng & Liang, Xiaoyang & Wang, Hang & Wang, Jiandong, 2024. "Biogas slurry change the transport and distribution of soil water under drip irrigation," Agricultural Water Management, Elsevier, vol. 294(C).
    12. L.J. Li & D.H. Zeng & R. Mao & Z.Y. Yu, 2012. "Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(10), pages 446-451.
    13. Yusen Chen & Shihang Zhang & Yongdong Wang, 2022. "Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia," Land, MDPI, vol. 11(10), pages 1-12, October.
    14. Charles A. Taylor & Geoffrey Heal, 2021. "Fertilizer and Algal Blooms: A Satellite Approach to Assessing Water Quality," NBER Chapters, in: Risks in Agricultural Supply Chains, pages 83-105, National Bureau of Economic Research, Inc.
    15. Chen, Minpeng & Sun, Fu & Shindo, Junko, 2016. "China’s agricultural nitrogen flows in 2011: Environmental assessment and management scenarios," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 10-27.
    16. Han, Jichong & Zhang, Zhao & Luo, Yuchuan & Cao, Juan & Zhang, Liangliang & Zhuang, Huimin & Cheng, Fei & Zhang, Jing & Tao, Fulu, 2022. "Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020," Agricultural Systems, Elsevier, vol. 200(C).
    17. Rong Zhang & Chuan Li & Huilin Cui & Yanbo Wang & Shaoce Zhang & Pei Li & Yue Hou & Ying Guo & Guojin Liang & Zhaodong Huang & Chao Peng & Chunyi Zhi, 2023. "Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Smith, Nicola J & McDonald, Garry W & Patterson, Murray G, 2020. "Biogeochemical cycling in the anthropocene: Quantifying global environment-economy exchanges," Ecological Modelling, Elsevier, vol. 418(C).
    19. Gu, Baojing & Liu, Dong & Wu, Xu & Ge, Ying & Min, Yong & Jiang, Hong & Chang, Jie, 2011. "Utilization of waste nitrogen for biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4910-4916.
    20. Wang, Haitao & Wang, Jiandong & Wang, Chuanjuan & Wang, Shuji & Qiu, Xuefeng & Li, Guangyong, 2022. "Adaptability of biogas slurry–water ratio and emitter types in biogas slurry drip irrigation system," Agricultural Water Management, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4400-:d:363849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.