IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v283y2023ics0378377423001798.html
   My bibliography  Save this article

The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates

Author

Listed:
  • Sangha, Laljeet
  • Shortridge, Julie
  • Frame, William

Abstract

Irrigation adoption is increasing in humid regions to offset short-term dry periods, especially at the peak of the growing season. Low soil moisture at the peak growth stage impacts yield and limits the plant's capacity to uptake nitrogen, resulting in low nutrient use efficiency (NUE). However, heavy rainfall on fields with supplemental irrigation may result in waterlogging and surface runoff, leading to nutrient leaching and runoff. This ultimately can lead to lower NUE, poor water use efficiency (WUE), reduced yields, and water quality impacts. This makes irrigation management challenging in humid regions, as irrigators must avoid both limited and excess water conditions. This field study aimed to develop and test an irrigation management methodology using real-time soil water availability, crop physiological status, water needs, and short-term weather forecasts information from National Weather Service. A rule-based approach determined by soil moisture depletion and short-term weather forecasts was used to trigger irrigation to avoid both stress and excess water conditions. This method was tested in two years of field trials in Suffolk, Virginia to quantify its impacts on yield, NUE, WUE, and financial returns in corn and cotton under four nitrogen application treatments. The relative impact of irrigation and nitrogen treatment was quantified using mixed effects models. The yield, NUE and WUE were impacted by both precipitation and irrigation patterns. Significantly different yields were observed under Nrates treatments for both corn and cotton. The trends of economic returns were similar to yield and were significantly different between recent and historic prices. This study also discusses the impacts of reliability and practical challenges of using Weather Informed irrigation in a field study.

Suggested Citation

  • Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001798
    DOI: 10.1016/j.agwat.2023.108314
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    2. Langemeier, Michael, 2022. "Trends in General Inflation and Farm Input Prices," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 12(56), April.
    3. Vories, Earl & Sudduth, Ken, 2021. "Determining sensor-based field capacity for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 250(C).
    4. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    5. Ballester, Carlos & Hornbuckle, John & Brinkhoff, James & Quayle, Wendy C., 2021. "Effects of three frequencies of irrigation and nitrogen rates on lint yield, nitrogen use efficiency and fibre quality of cotton under furrow irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    6. Shang, Songhao & Mao, Xiaomin, 2006. "Application of a simulation based optimization model for winter wheat irrigation scheduling in North China," Agricultural Water Management, Elsevier, vol. 85(3), pages 314-322, October.
    7. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    8. Zurweller, B.A. & Rowland, D.L. & Mulvaney, M.J. & Tillman, B.L. & Migliaccio, K. & Wright, D. & Erickson, J. & Payton, P. & Vellidis, G., 2019. "Optimizing cotton irrigation and nitrogen management using a soil water balance model and in-season nitrogen applications," Agricultural Water Management, Elsevier, vol. 216(C), pages 306-314.
    9. Paoletti, J. Mitchell & Shortridge, Julie E., 2020. "Improved representation of uncertainty in farm-level financial cost-benefit analyses of supplemental irrigation in humid regions," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Vazifedoust, M. & van Dam, J.C. & Feddes, R.A. & Feizi, M., 2008. "Increasing water productivity of irrigated crops under limited water supply at field scale," Agricultural Water Management, Elsevier, vol. 95(2), pages 89-102, February.
    11. Gowing, J. W. & Ejieji, C. J., 2001. "Real-time scheduling of supplemental irrigation for potatoes using a decision model and short-term weather forecasts," Agricultural Water Management, Elsevier, vol. 47(2), pages 137-153, March.
    12. Hunsaker, D. J. & Clemmens, A. J. & Fangmeier, D. D., 1998. "Cotton response to high frequency surface irrigation," Agricultural Water Management, Elsevier, vol. 37(1), pages 55-74, June.
    13. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hongbo & Li, Guohui & Huang, Weixiong & Li, Zhaoyang & Wang, Xingpeng & Gao, Yang, 2024. "Compensation of cotton yield by nitrogen fertilizer in non-mulched fields with deficit drip irrigation," Agricultural Water Management, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    3. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Kiymaz, Sultan & Ertek, Ahmet, 2015. "Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes," Agricultural Water Management, Elsevier, vol. 158(C), pages 225-234.
    5. Tapsuwan, Sorada & Peña-Arancibia, Jorge L. & Lazarow, Neil & Albisetti, Melisa & Zheng, Hongxing & Rojas, Rodrigo & Torres-Alferez, Vianney & Chiew, Francis H.S. & Hopkins, Richard & Penton, David J., 2022. "A benefit cost analysis of strategic and operational management options for water management in hyper-arid southern Peru," Agricultural Water Management, Elsevier, vol. 265(C).
    6. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    7. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    8. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    9. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    10. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    11. Bao-Li Miao & Ying Liu & Yu-Bing Fan & Xue-Jiao Niu & Xiu-Yun Jiang & Zeng Tang, 2023. "Optimization of Agricultural Resource Allocation among Crops: A Portfolio Model Analysis," Land, MDPI, vol. 12(10), pages 1-18, October.
    12. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    13. Zhang, Cheng-Yao & Oki, Taikan, 2023. "Water pricing reform for sustainable water resources management in China’s agricultural sector," Agricultural Water Management, Elsevier, vol. 275(C).
    14. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    15. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    16. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    17. Florian Rabitz & Alin Olteanu & Jurgita Jurkevičienė & Agnė Budžytė, 2021. "A topic network analysis of the system turn in the environmental sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2107-2140, March.
    18. Segovia-Cardozo, Daniel Alberto & Rodríguez-Sinobas, Leonor & Zubelzu, Sergio, 2019. "Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images," Agricultural Water Management, Elsevier, vol. 212(C), pages 241-251.
    19. Luís Loures & José Gama & José Rato Nunes & António Lopez-Piñeiro, 2017. "Assessing the Sodium Exchange Capacity in Rainfed and Irrigated Soils in the Mediterranean Basin Using GIS," Sustainability, MDPI, vol. 9(3), pages 1-12, March.
    20. Oweis, T.Y. & Farahani, H.J. & Hachum, A.Y., 2011. "Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria," Agricultural Water Management, Elsevier, vol. 98(8), pages 1239-1248, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.