IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43897-6.html
   My bibliography  Save this article

Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells

Author

Listed:
  • Rong Zhang

    (City University of Hong Kong)

  • Chuan Li

    (City University of Hong Kong)

  • Huilin Cui

    (City University of Hong Kong)

  • Yanbo Wang

    (City University of Hong Kong)

  • Shaoce Zhang

    (City University of Hong Kong)

  • Pei Li

    (City University of Hong Kong)

  • Yue Hou

    (City University of Hong Kong)

  • Ying Guo

    (Shenzhen University)

  • Guojin Liang

    (City University of Hong Kong)

  • Zhaodong Huang

    (City University of Hong Kong)

  • Chao Peng

    (Chinese Academy of Sciences)

  • Chunyi Zhi

    (City University of Hong Kong
    City University of Hong Kong
    Songshan Lake Materials Laboratory)

Abstract

Most current research is devoted to electrochemical nitrate reduction reaction for ammonia synthesis under alkaline/neutral media while the investigation of nitrate reduction under acidic conditions is rarely reported. In this work, we demonstrate the potential of TiO2 nanosheet with intrinsically poor hydrogen-evolution activity for selective and rapid nitrate reduction to ammonia under acidic conditions. Hybridized with iron phthalocyanine, the resulting catalyst displays remarkably improved efficiency toward ammonia formation owing to the enhanced nitrate adsorption, suppressed hydrogen evolution and lowered energy barrier for the rate-determining step. Then, an alkaline-acid hybrid Zn-nitrate battery was developed with high open-circuit voltage of 1.99 V and power density of 91.4 mW cm–2. Further, the environmental sulfur recovery can be powered by above hybrid battery and the hydrazine-nitrate fuel cell can be developed for simultaneously hydrazine/nitrate conversion and electricity generation. This work demonstrates the attractive potential of acidic nitrate reduction for ammonia electrosynthesis and broadens the field of energy conversion.

Suggested Citation

  • Rong Zhang & Chuan Li & Huilin Cui & Yanbo Wang & Shaoce Zhang & Pei Li & Yue Hou & Ying Guo & Guojin Liang & Zhaodong Huang & Chao Peng & Chunyi Zhi, 2023. "Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43897-6
    DOI: 10.1038/s41467-023-43897-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43897-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43897-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    2. Yanbo Wang & Qing Li & Hu Hong & Shuo Yang & Rong Zhang & Xiaoqi Wang & Xu Jin & Bo Xiong & Shengchi Bai & Chunyi Zhi, 2023. "Lean-water hydrogel electrolyte for zinc ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Min Wang & Kristian Torbensen & Danielle Salvatore & Shaoxuan Ren & Dorian Joulié & Fabienne Dumoulin & Daniela Mendoza & Benedikt Lassalle-Kaiser & Umit Işci & Curtis P. Berlinguette & Marc Robert, 2019. "CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    2. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    3. Yuzhu Zhou & Quan Zhou & Hengjie Liu & Wenjie Xu & Zhouxin Wang & Sicong Qiao & Honghe Ding & Dongliang Chen & Junfa Zhu & Zeming Qi & Xiaojun Wu & Qun He & Li Song, 2023. "Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Jie Zhang & Jia Liu & Guilong Li & Meng Wu, 2024. "Screening Potential Nitrification Inhibitors through a Structure–Activity Relationship Study—The Case of Cinnamic Acid Derivatives," Sustainability, MDPI, vol. 16(13), pages 1-10, July.
    5. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    6. L.J. Li & D.H. Zeng & R. Mao & Z.Y. Yu, 2012. "Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(10), pages 446-451.
    7. Zhen-Zhen Zheng & Li-Wei Zheng & Min Nina Xu & Ehui Tan & David A. Hutchins & Wenchao Deng & Yao Zhang & Dalin Shi & Minhan Dai & Shuh-Ji Kao, 2020. "Substrate regulation leads to differential responses of microbial ammonia-oxidizing communities to ocean warming," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Qingsong Guan & Yiqiao Zhou & Shuo Li & Fan Yang & Rentao Liu, 2024. "Denitrification and Anammox and Feammox in the Yinchuan Yellow River wetland," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(11), pages 731-738.
    9. Douglas, Niall Edward, 2008. "Modelling the Costs of Climate Change and its Costs of Mitigation: A Scientific Approach," MPRA Paper 13650, University Library of Munich, Germany.
    10. E. Harris & L. Yu & Y-P. Wang & J. Mohn & S. Henne & E. Bai & M. Barthel & M. Bauters & P. Boeckx & C. Dorich & M. Farrell & P. B. Krummel & Z. M. Loh & M. Reichstein & J. Six & M. Steinbacher & N. S., 2022. "Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "Assessing nitrogen controls on carbon, water and energy exchanges in major plant functional types across North America using a carbon and nitrogen coupled ecosystem model," Ecological Modelling, Elsevier, vol. 323(C), pages 12-27.
    12. Faith M. Hartley & Aaron E. Maxwell & Rick E. Landenberger & Zachary J. Bortolot, 2022. "Forest Type Differentiation Using GLAD Phenology Metrics, Land Surface Parameters, and Machine Learning," Geographies, MDPI, vol. 2(3), pages 1-25, August.
    13. Geshere Abdisa Gurmesa & Ang Wang & Shanlong Li & Shushi Peng & Wim Vries & Per Gundersen & Philippe Ciais & Oliver L. Phillips & Erik A. Hobbie & Weixing Zhu & Knute Nadelhoffer & Yi Xi & Edith Bai &, 2022. "Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Haoyu Jin & Chao Zhang & Siyu Meng & Qin Wang & Xiaokun Ding & Ling Meng & Yunyun Zhuang & Xiaohong Yao & Yang Gao & Feng Shi & Thomas Mock & Huiwang Gao, 2024. "Atmospheric deposition and river runoff stimulate the utilization of dissolved organic phosphorus in coastal seas," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Sishuang Tang & Minghao Xie & Saerom Yu & Xun Zhan & Ruilin Wei & Maoyu Wang & Weixin Guan & Bowen Zhang & Yuyang Wang & Hua Zhou & Gengfeng Zheng & Yuanyue Liu & Jamie H. Warner & Guihua Yu, 2024. "General synthesis of high-entropy single-atom nanocages for electrosynthesis of ammonia from nitrate," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Mohammed Abbas, Akhtar Hasnain & Cheralathan, Kanakkampalayam Krishnan & Porpatham, Ekambaram & Arumugam, Senthil Kumar, 2024. "Hydrogen generation using methanol steam reforming – catalysts, reactors, and thermo-chemical recuperation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    17. Chao-Chen Hu & Xue-Yan Liu & Avery W. Driscoll & Yuan-Wen Kuang & E. N. Jack Brookshire & Xiao-Tao Lü & Chong-Juan Chen & Wei Song & Rong Mao & Cong-Qiang Liu & Benjamin Z. Houlton, 2024. "Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Xianhui S. Wan & Hua-Xia Sheng & Li Liu & Hui Shen & Weiyi Tang & Wenbin Zou & Min N. Xu & Zhenzhen Zheng & Ehui Tan & Mingming Chen & Yao Zhang & Bess B. Ward & Shuh-Ji Kao, 2023. "Particle-associated denitrification is the primary source of N2O in oxic coastal waters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Yukio Watanabe & Wataru Aoki & Mitsuyoshi Ueda, 2021. "Sustainable Biological Ammonia Production towards a Carbon-Free Society," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    20. James Shortle & Richard D. Horan, 2017. "Nutrient Pollution: A Wicked Challenge for Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-39, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43897-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.