IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1336-d210715.html
   My bibliography  Save this article

Revealing the Varying Impact of Urban Built Environment on Online Car-Hailing Travel in Spatio-Temporal Dimension: An Exploratory Analysis in Chengdu, China

Author

Listed:
  • Tian Li

    (School of Automotive and Traffic Engineering, Jiangsu University, Jiangsu 212013, China
    School of Transportation and Logistics Engineering, Shandong Jiaotong University, Jinan 264209, China)

  • Peng Jing

    (School of Automotive and Traffic Engineering, Jiangsu University, Jiangsu 212013, China)

  • Linchao Li

    (School of Transportation, Southeast University, Nanjing 210096, China)

  • Dazhi Sun

    (School of Automotive and Traffic Engineering, Jiangsu University, Jiangsu 212013, China
    School of Transportation and Logistics Engineering, Shandong Jiaotong University, Jinan 264209, China)

  • Wenbo Yan

    (School of Transportation and Logistics Engineering, Shandong Jiaotong University, Jinan 264209, China)

Abstract

Online car-hailing travel is an increasingly popular mode of urban transport. A fundamental understanding of the relationship between the urban built environment and online car-hailing travel is essential for developing the corresponding traffic strategy and addressing sustainable urban planning and design. However, the varying impact of the urban built environment on online car-hailing travel in the spatial dimension has not been sufficiently investigated. This paper aims to fill this gap by using geographically weighted regression (GWR) to check the spatial heterogeneity of the likely influence. The result shows that the GWR model is superior to the global model (OLS) from the perspective of goodness of fit. The study finds that the recreation and entertainment Point of Interest (POI) and the residential district POI are the most influential factors on night online car-hailing travel. Land-use mix is found to have a positive effect on online car-hailing travel, and online car-hailing services can be a complementary mode for public transport, especially in suburban areas.

Suggested Citation

  • Tian Li & Peng Jing & Linchao Li & Dazhi Sun & Wenbo Yan, 2019. "Revealing the Varying Impact of Urban Built Environment on Online Car-Hailing Travel in Spatio-Temporal Dimension: An Exploratory Analysis in Chengdu, China," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1336-:d:210715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1336/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1336/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    3. Wang, Donggen & Chai, Yanwei & Li, Fei, 2011. "Built environment diversities and activity–travel behaviour variations in Beijing, China," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1173-1186.
    4. Luc Anselin & Daniel A. Griffith, 1988. "Do Spatial Effecfs Really Matter In Regression Analysis?," Papers in Regional Science, Wiley Blackwell, vol. 65(1), pages 11-34, January.
    5. repec:wsr:wpaper:y:2010:i:062 is not listed on IDEAS
    6. A S Fotheringham & M E Charlton & C Brunsdon, 1998. "Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis," Environment and Planning A, , vol. 30(11), pages 1905-1927, November.
    7. Christopher Zegras, 2010. "The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile," Urban Studies, Urban Studies Journal Limited, vol. 47(8), pages 1793-1817, July.
    8. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    9. Veronique Acker & Frank Witlox, 2011. "Commuting trips within tours: how is commuting related to land use?," Transportation, Springer, vol. 38(3), pages 465-486, May.
    10. Crane, Randall, 1994. "Cars and Drivers in the New Suburbs: Linking Access to Travel in Neotraditional Planning," University of California Transportation Center, Working Papers qt4pw639bw, University of California Transportation Center.
    11. Mulley, Corinne & Tsai, Chi-Hong (Patrick) & Ma, Liang, 2018. "Does residential property price benefit from light rail in Sydney?," Research in Transportation Economics, Elsevier, vol. 67(C), pages 3-10.
    12. Wang, Chih-Hao & Chen, Na, 2017. "A geographically weighted regression approach to investigating the spatially varied built-environment effects on community opportunity," Journal of Transport Geography, Elsevier, vol. 62(C), pages 136-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenbao Wang & Xin Gong & Yuchen Zhang & Shuyue Liu & Ning Chen, 2023. "Multi-Scale Geographically Weighted Elasticity Regression Model to Explore the Elastic Effects of the Built Environment on Ride-Hailing Ridership," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    2. Zhang, Xiaojian & Zhou, Zhengze & Xu, Yiming & Zhao, Xilei, 2024. "Analyzing spatial heterogeneity of ridesourcing usage determinants using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 114(C).
    3. Song Li & Fei Xue & Chuyu Xia & Jian Zhang & Ao Bian & Yuexi Lang & Jun Zhou, 2022. "A Big Data-Based Commuting Carbon Emissions Accounting Method—A Case of Hangzhou," Land, MDPI, vol. 11(6), pages 1-18, June.
    4. Jincheng Wang & Qunqi Wu & Feng Mao & Yilong Ren & Zilin Chen & Yaqun Gao, 2021. "Influencing Factor Analysis and Demand Forecasting of Intercity Online Car-Hailing Travel," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    5. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    6. Rosita De Vincentis & Federico Karagulian & Carlo Liberto & Marialisa Nigro & Vincenza Rosati & Gaetano Valenti, 2022. "A Data-Driven Approach to Analyze Mobility Patterns and the Built Environment: Evidence from Brescia, Catania, and Salerno (Italy)," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    7. Gang Li & Ruining Zhang & Shujuan Guo & Junyi Zhang, 2022. "Analysis of Ride-Hailing Passenger Satisfaction and Life Satisfaction Based on a MIMIC Model," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
    8. Jinjun Tang & Fan Gao & Fang Liu & Wenhui Zhang & Yong Qi, 2019. "Understanding Spatio-Temporal Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM," Sustainability, MDPI, vol. 11(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chengxiang Zhuge & Wenjun Li, 2018. "Application of Bayesian Multilevel Models Using Small and Medium Size City in China: The Case of Changchun," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    2. Ao, Yibin & Yang, Dujuan & Chen, Chuan & Wang, Yan, 2019. "Exploring the effects of the rural built environment on household car ownership after controlling for preference and attitude: Evidence from Sichuan, China," Journal of Transport Geography, Elsevier, vol. 74(C), pages 24-36.
    3. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    4. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    5. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    6. Xiaoquan Wang & Weifeng Wang & Chaoying Yin, 2023. "Exploring the Relationships between Multilevel Built Environments and Commute Durations in Dual-Earner Households: Does Gender Matter?," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    7. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    8. Jincheng Wang & Qunqi Wu & Feng Mao & Yilong Ren & Zilin Chen & Yaqun Gao, 2021. "Influencing Factor Analysis and Demand Forecasting of Intercity Online Car-Hailing Travel," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    9. Donggen Wang & Tao Lin, 2019. "Built environment, travel behavior, and residential self-selection: a study based on panel data from Beijing, China," Transportation, Springer, vol. 46(1), pages 51-74, February.
    10. Liya Yang & Lingqian Hu & Zhenbo Wang, 2019. "The built environment and trip chaining behaviour revisited: The joint effects of the modifiable areal unit problem and tour purpose," Urban Studies, Urban Studies Journal Limited, vol. 56(4), pages 795-817, March.
    11. Yibin Ao & Chuan Chen & Dujuan Yang & Yan Wang, 2018. "Relationship between Rural Built Environment and Household Vehicle Ownership: An Empirical Analysis in Rural Sichuan, China," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    12. Bindong Sun & Chun Yin, 2020. "Impacts of a multi-scale built environment and its corresponding moderating effects on commute duration in China," Urban Studies, Urban Studies Journal Limited, vol. 57(10), pages 2115-2130, August.
    13. Guanwei Zhao & Zhitao Li & Yuzhen Shang & Muzhuang Yang, 2022. "How Does the Urban Built Environment Affect Online Car-Hailing Ridership Intensity among Different Scales?," IJERPH, MDPI, vol. 19(9), pages 1-25, April.
    14. Ding, Chuan & Zhou, Xinyu & Jason Cao, Xinyu & Yang, Jiawen, 2023. "Spatial and mediation analysis of the influences of residential and workplace built environments on commuting by car," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    15. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    16. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    17. Boukarta Soufiane & Berezowska-Azzag Ewa, 2020. "Exploring the Role of Socio-Economic and Built Environment Driving Factors in Shaping the Commuting Modal Share: A Path-Analysis-Based Approach," Quaestiones Geographicae, Sciendo, vol. 39(4), pages 87-107, December.
    18. Liu, Jixiang & Xiao, Longzhu, 2023. "Non-linear relationships between built environment and commuting duration of migrants and locals," Journal of Transport Geography, Elsevier, vol. 106(C).
    19. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    20. Næss, Petter & Peters, Sebastian & Stefansdottir, Harpa & Strand, Arvid, 2018. "Causality, not just correlation: Residential location, transport rationales and travel behavior across metropolitan contexts," Journal of Transport Geography, Elsevier, vol. 69(C), pages 181-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1336-:d:210715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.