IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p4966-d1093807.html
   My bibliography  Save this article

Multi-Scale Geographically Weighted Elasticity Regression Model to Explore the Elastic Effects of the Built Environment on Ride-Hailing Ridership

Author

Listed:
  • Zhenbao Wang

    (School of Architecture and Art, Hebei University of Engineering, Handan 056038, China)

  • Xin Gong

    (School of Architecture and Art, Hebei University of Engineering, Handan 056038, China)

  • Yuchen Zhang

    (Department of Urban Studies and Planning, The University of Sheffield, Sheffield S10 2TN, UK)

  • Shuyue Liu

    (School of Architecture and Art, Hebei University of Engineering, Handan 056038, China)

  • Ning Chen

    (Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract

Understanding the relationship between the built environment and the ride-hailing ridership is crucial to the prediction of the demand for ride-hailing and the formulation of the strategy for upgrading the built environment. However, the existing studies on ride-hailing ignore the scale effect and zone effect of the modifiable area unit problem (MAUP), and show a lack of consideration for the elastic relationship with spatial heterogeneity between built environment variables and ride-hailing ridership. Taking Chengdu as an example, this paper selects 12 independent variables based on the “5Ds” (density, diversity, design, destination accessibility and distance to transit) of the built environment, the dependent variables are the density of ride-hailing pick-ups in the morning and evening peak hours, and 11 spatial units are proposed according to different scales and zoning methods for the aggregation of built environment variables and ride-hailing pick-ups. With the goal of global optimal goodness-of-fit, we determined the optimal spatial unit by using the log-linear Ordinary Least-Squares (OLS) model. A multi-scale geographically weighted elastic regression (MGWER) model is formulated to explore the relative effect of the built environment on the ride-hailing ridership and spatial heterogeneity. The average value of positive elastic local regression coefficient of different variables is used to measure the relative positive impact of built environment factors, and the absolute value of the average value of negative elastic local regression coefficient is used to measure the relative negative impact of built environment factors. The results show that: (1) The MGWER model under the community unit division has the best global goodness-of-fit. (2) Different built environment variables have different elastic impacts on the demand for ride-hailing. For the morning peak hours and evening peak hours, the top three built environment factors with positive impacts are ranked as follows: commercial POI density > average house price > population density, and distance to CBD has the highest negative impacts on pick-up ridership. (3) The different local elasticity coefficients of the built environment factors at different stations are discussed, which indicate the spatial heterogeneity of the ride-hailing ridership. The optimal community zoning method can provide a basis for the zoning and scheduling management of ride-hailing. The results of the built environment variables with greater impact are conducive to the formulation of targeted urban renewal strategies in the process of adjusting the ridership of ride-hailing.

Suggested Citation

  • Zhenbao Wang & Xin Gong & Yuchen Zhang & Shuyue Liu & Ning Chen, 2023. "Multi-Scale Geographically Weighted Elasticity Regression Model to Explore the Elastic Effects of the Built Environment on Ride-Hailing Ridership," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4966-:d:1093807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/4966/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/4966/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    2. Lu, Xijin & Ma, Changxi & Qiao, Yihuan, 2021. "Short-term demand forecasting for online car-hailing using ConvLSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    3. Zhang, Bin & Chen, Shuyan & Ma, Yongfeng & Li, Tiezhu & Tang, Kun, 2020. "Analysis on spatiotemporal urban mobility based on online car-hailing data," Journal of Transport Geography, Elsevier, vol. 82(C).
    4. Xin Lao & Hengyu Gu, 2020. "Unveiling various spatial patterns of determinants of hukou transfer intentions in China: A multi‐scale geographically weighted regression approach," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1860-1876, December.
    5. Wang, Donggen & Cao, Xinyu, 2017. "Impacts of the built environment on activity-travel behavior: Are there differences between public and private housing residents in Hong Kong?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 25-35.
    6. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    7. Guanwei Zhao & Zhitao Li & Yuzhen Shang & Muzhuang Yang, 2022. "How Does the Urban Built Environment Affect Online Car-Hailing Ridership Intensity among Different Scales?," IJERPH, MDPI, vol. 19(9), pages 1-25, April.
    8. Mateusz Tomal, 2022. "Exploring the meso-determinants of apartment prices in Polish counties using spatial autoregressive multiscale geographically weighted regression," Applied Economics Letters, Taylor & Francis Journals, vol. 29(9), pages 822-830, May.
    9. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    10. Sai Wang & Jianjun Wang & Weijia Li & Jialin Fan & Mingyu Liu & Giulio E. Cantarella, 2022. "Revealing the Influence Mechanism of Urban Built Environment on Online Car-Hailing Travel considering Orientation Entropy of Street Network," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-15, February.
    11. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    12. Tian Li & Peng Jing & Linchao Li & Dazhi Sun & Wenbo Yan, 2019. "Revealing the Varying Impact of Urban Built Environment on Online Car-Hailing Travel in Spatio-Temporal Dimension: An Exploratory Analysis in Chengdu, China," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    13. Zhenbao Wang & Jiarui Song & Yuchen Zhang & Shihao Li & Jianlin Jia & Chengcheng Song, 2022. "Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaojian & Zhou, Zhengze & Xu, Yiming & Zhao, Xilei, 2024. "Analyzing spatial heterogeneity of ridesourcing usage determinants using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengyu Zhu & Jiarong Li & Kailai Wang & Jie Huang, 2024. "Exploring spatial heterogeneity in the impact of built environment on taxi ridership using multiscale geographically weighted regression," Transportation, Springer, vol. 51(5), pages 1963-1997, October.
    2. Lyu, Tao & Wang, Yuanqing & Ji, Shujuan & Feng, Tao & Wu, Zhouhao, 2023. "A multiscale spatial analysis of taxi ridership," Journal of Transport Geography, Elsevier, vol. 113(C).
    3. Jinjun Tang & Fan Gao & Fang Liu & Wenhui Zhang & Yong Qi, 2019. "Understanding Spatio-Temporal Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM," Sustainability, MDPI, vol. 11(19), pages 1-19, October.
    4. Jincheng Wang & Qunqi Wu & Feng Mao & Yilong Ren & Zilin Chen & Yaqun Gao, 2021. "Influencing Factor Analysis and Demand Forecasting of Intercity Online Car-Hailing Travel," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    5. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    6. HUO, Zhengqi & YANG, Xiaobao & LIU, Xiaobing & YAN, Xuedong, 2024. "Spatio-temporal analysis on online designated driving based on empirical data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    7. Guanwei Zhao & Zhitao Li & Yuzhen Shang & Muzhuang Yang, 2022. "How Does the Urban Built Environment Affect Online Car-Hailing Ridership Intensity among Different Scales?," IJERPH, MDPI, vol. 19(9), pages 1-25, April.
    8. Hengyu Gu & Hanchen Yu & Mehak Sachdeva & Ye Liu, 2021. "Analyzing the distribution of researchers in China: An approach using multiscale geographically weighted regression," Growth and Change, Wiley Blackwell, vol. 52(1), pages 443-459, March.
    9. Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
    10. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    11. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    12. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    13. Zhitao Li & Xiaolu Wang & Fan Gao & Jinjun Tang & Hanmeng Xu, 2024. "Analysis of mobility patterns for urban taxi ridership: the role of the built environment," Transportation, Springer, vol. 51(4), pages 1409-1431, August.
    14. Li Yue & Hongbo Zhao & Xiaoman Xu & Tianshun Gu & Zeting Jia, 2022. "Quantifying the Spatial Fragmentation Pattern and Its Influencing Factors of Urban Land Use: A Case Study of Pingdingshan City, China," Land, MDPI, vol. 11(5), pages 1-15, May.
    15. Zhang, Xiaojian & Zhou, Zhengze & Xu, Yiming & Zhao, Xilei, 2024. "Analyzing spatial heterogeneity of ridesourcing usage determinants using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 114(C).
    16. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    17. Chen Xie & Dexin Yu & Ciyun Lin & Xiaoyu Zheng & Bo Peng, 2022. "Exploring the Spatiotemporal Impacts of the Built Environment on Taxi Ridership Using Multisource Data," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    18. Qi Chen & Yibo Yan & Xu Zhang & Jian Chen, 2022. "Impact of Subjective and Objective Factors on Subway Travel Behavior: Spatial Differentiation," IJERPH, MDPI, vol. 19(23), pages 1-17, November.
    19. Qi Chen & Yibo Yan & Xu Zhang & Jian Chen, 2022. "A Study on the Impact of Built Environment Elements on Satisfaction with Residency Whilst Considering Spatial Heterogeneity," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    20. Rongjun Cheng & Wenbao Zeng & Xingjian Wu & Fuzhou Chen & Baobin Miao, 2024. "Exploring the Influence of the Built Environment on the Demand for Online Car-Hailing Services Using a Multi-Scale Geographically and Temporally Weighted Regression Model," Sustainability, MDPI, vol. 16(5), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4966-:d:1093807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.