IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1566-d146298.html
   My bibliography  Save this article

Relationship between Rural Built Environment and Household Vehicle Ownership: An Empirical Analysis in Rural Sichuan, China

Author

Listed:
  • Yibin Ao

    (Business School, Sichuan University, Chengdu 610065, Sichuan, China
    College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China)

  • Chuan Chen

    (Business School, Sichuan University, Chengdu 610065, Sichuan, China)

  • Dujuan Yang

    (Department of the Built Environment, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

  • Yan Wang

    (Department of Engineering Management, Sichuan College of Architectural Technology, Deyang 618000, Sichuan, China)

Abstract

With the rapid rural urbanization and new rural construction in China, tremendous changes are occurring in rural built environments and rural household vehicle ownership. However, few studies have examined the relationship between rural built environments and rural household vehicle ownership. In this study, a questionnaire survey of 374 rural households was conducted and the built environment data of seven typical villages in rural Sichuan were collected using Geographic Information System (GIS) technology and on-site measurement. This study aimed to investigate the relationship between the rural built environment and rural household vehicle ownership in China through a multinomial logit (MNL) model. Results show that household structure attributes have the most significant relationship with vehicle ownership, followed by rural built environment attributes and the respondents’ driving skills. In the process of urbanization, with increases in building density, road density, and destination accessibility, an increase in high-carbon vehicle ownership is an inevitable trend among rural households. However, low-carbon-oriented rural planning can effectively control the increase in high-carbon vehicle ownership. For example, the distance between rural households and important destinations, such as hospitals, schools, and markets, should be shortened and rural residents should be encouraged to learn to ride bicycles. Moreover, rural residents riding motorcycles can effectively reduce household car ownership.

Suggested Citation

  • Yibin Ao & Chuan Chen & Dujuan Yang & Yan Wang, 2018. "Relationship between Rural Built Environment and Household Vehicle Ownership: An Empirical Analysis in Rural Sichuan, China," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1566-:d:146298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Keiko Hirota, 2010. "Comparative Studies on Vehicle Related Policies for Air Pollution Reduction in Ten Asian Countries," Sustainability, MDPI, vol. 2(1), pages 1-18, January.
    2. Guo, Zhan, 2013. "Does residential parking supply affect household car ownership? The case of New York City," Journal of Transport Geography, Elsevier, vol. 26(C), pages 18-28.
    3. Chatman, Daniel G., 2008. "Deconstructing development density: Quality, quantity and price effects on household non-work travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(7), pages 1008-1030, August.
    4. Yi Zhang & Wei Wu & Yuan Li & Qixing Liu & Chaoyang Li, 2014. "Does the Built Environment Make a Difference? An Investigation of Household Vehicle Use in Zhongshan Metropolitan Area, China," Sustainability, MDPI, vol. 6(8), pages 1-21, August.
    5. Yi Zhang & Xiaoguang Yang & Yuan Li & Qixing Liu & Chaoyang Li, 2014. "Household, Personal and Environmental Correlates of Rural Elderly’s Cycling Activity: Evidence from Zhongshan Metropolitan Area, China," Sustainability, MDPI, vol. 6(6), pages 1-16, June.
    6. Cervero, Robert, 1996. "Mixed land-uses and commuting: Evidence from the American Housing Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 361-377, September.
    7. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    8. Yitian Wang & Zixuan Peng & Keming Wang & Xiaolin Song & Baozhen Yao & Tao Feng, 2015. "Research on Urban Road Congestion Pricing Strategy Considering Carbon Dioxide Emissions," Sustainability, MDPI, vol. 7(8), pages 1-20, August.
    9. Reid Ewing & Guang Tian & JP Goates & Ming Zhang & Michael J Greenwald & Alex Joyce & John Kircher & William Greene, 2015. "Varying influences of the built environment on household travel in 15 diverse regions of the United States," Urban Studies, Urban Studies Journal Limited, vol. 52(13), pages 2330-2348, October.
    10. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    11. Cao, Xinyu (Jason) & Mokhtarian, Patricia L. & Handy, Susan L., 2009. "The relationship between the built environment and nonwork travel: A case study of Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 548-559, June.
    12. Sabreena Anowar & Shamsunnahar Yasmin & Naveen Eluru & Luis Miranda-Moreno, 2014. "Analyzing car ownership in Quebec City: a comparison of traditional and latent class ordered and unordered models," Transportation, Springer, vol. 41(5), pages 1013-1039, September.
    13. Pengjun Zhao, 2011. "Car use, commuting and urban form in a rapidly growing city: evidence from Beijing," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(6), pages 509-527, June.
    14. Jinhyun Hong & Qing Shen & Lei Zhang, 2014. "How do built-environment factors affect travel behavior? A spatial analysis at different geographic scales," Transportation, Springer, vol. 41(3), pages 419-440, May.
    15. Christopher Zegras, 2010. "The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile," Urban Studies, Urban Studies Journal Limited, vol. 47(8), pages 1793-1817, July.
    16. Choudhary, Ravi & Vasudevan, Vinod, 2017. "Study of vehicle ownership for urban and rural households in India," Journal of Transport Geography, Elsevier, vol. 58(C), pages 52-58.
    17. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    18. Keller, Rose & Vance, Colin, 2013. "Landscape pattern and car use: Linking household data with satellite imagery," Journal of Transport Geography, Elsevier, vol. 33(C), pages 250-257.
    19. Bhat, Chandra R. & Guo, Jessica Y., 2007. "A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 506-526, June.
    20. Van Acker, Veronique & Witlox, Frank, 2010. "Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship," Journal of Transport Geography, Elsevier, vol. 18(1), pages 65-74.
    21. Handy, Susan & Cao, Xinyu & Mokhtarian, Patricia L., 2005. "Correlation or causality between the built environment and travel behavior? Evidence from Northern California," University of California Transportation Center, Working Papers qt5b76c5kg, University of California Transportation Center.
    22. Pengjun Zhao, 2014. "The Impact of the Built Environment on Bicycle Commuting: Evidence from Beijing," Urban Studies, Urban Studies Journal Limited, vol. 51(5), pages 1019-1037, April.
    23. Jason Cao & Xiaoshu Cao, 2014. "The Impacts of LRT, Neighbourhood Characteristics, and Self-selection on Auto Ownership: Evidence from Minneapolis-St. Paul," Urban Studies, Urban Studies Journal Limited, vol. 51(10), pages 2068-2087, August.
    24. Jianxi Feng & Martin Dijst & Bart Wissink & Jan Prillwitz, 2014. "Understanding Mode Choice in the Chinese Context: The Case of Nanjing Metropolitan Area," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 105(3), pages 315-330, July.
    25. John Holtzclaw & Robert Clear & Hank Dittmar & David Goldstein & Peter Haas, 2002. "Location Efficiency: Neighborhood and Socio-Economic Characteristics Determine Auto Ownership and Use - Studies in Chicago, Los Angeles and San Francisco," Transportation Planning and Technology, Taylor & Francis Journals, vol. 25(1), pages 1-27, January.
    26. Potoglou, Dimitris & Kanaroglou, Pavlos S., 2008. "Modelling car ownership in urban areas: a case study of Hamilton, Canada," Journal of Transport Geography, Elsevier, vol. 16(1), pages 42-54.
    27. Daniel G. Chatman, 2013. "Does TOD Need the T?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 79(1), pages 17-31, January.
    28. Broberg, Anna & Sarjala, Satu, 2015. "School travel mode choice and the characteristics of the urban built environment: The case of Helsinki, Finland," Transport Policy, Elsevier, vol. 37(C), pages 1-10.
    29. Colin Vance & Ralf Hedel, 2007. "The impact of urban form on automobile travel: disentangling causation from correlation," Transportation, Springer, vol. 34(5), pages 575-588, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaowan Dong & Yuhui Xu & Xiangmei Li, 2023. "The Proactive Effects of Built Environment on Rural Community Resilience: Evidence from China Family Panel Studies," IJERPH, MDPI, vol. 20(6), pages 1-20, March.
    2. Jie Ma & Xin Ye & Cheng Shi, 2018. "Development of Multivariate Ordered Probit Model to Understand Household Vehicle Ownership Behavior in Xiaoshan District of Hangzhou, China," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    3. Te Ma & Mahdi Aghaabbasi & Mujahid Ali & Rosilawati Zainol & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "Nonlinear Relationships between Vehicle Ownership and Household Travel Characteristics and Built Environment Attributes in the US Using the XGBT Algorithm," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    4. Ao, Yibin & Zhang, Yuting & Wang, Yan & Chen, Yunfeng & Yang, Linchuan, 2020. "Influences of rural built environment on travel mode choice of rural residents: The case of rural Sichuan," Journal of Transport Geography, Elsevier, vol. 85(C).
    5. Yan Wang & Yibin Ao & Yuting Zhang & Yan Liu & Lei Zhao & Yunfeng Chen, 2019. "Impact of the Built Environment and Bicycling Psychological Factors on the Acceptable Bicycling Distance of Rural Residents," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    6. Nan Ye & Linjie Gao & Zhicai Juan & Anning Ni, 2018. "Are People from Households with Children More Likely to Travel by Car? An Empirical Investigation of Individual Travel Mode Choices in Shanghai, China," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    7. Zhenzhen Xu & Chunfu Shao & Shengyou Wang & Chunjiao Dong, 2020. "Analysis and Prediction Model of Resident Travel Satisfaction," Sustainability, MDPI, vol. 12(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ao, Yibin & Yang, Dujuan & Chen, Chuan & Wang, Yan, 2019. "Exploring the effects of the rural built environment on household car ownership after controlling for preference and attitude: Evidence from Sichuan, China," Journal of Transport Geography, Elsevier, vol. 74(C), pages 24-36.
    2. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chengxiang Zhuge & Wenjun Li, 2018. "Application of Bayesian Multilevel Models Using Small and Medium Size City in China: The Case of Changchun," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    3. Guerra, Erick, 2015. "The geography of car ownership in Mexico City: a joint model of households’ residential location and car ownership decisions," Journal of Transport Geography, Elsevier, vol. 43(C), pages 171-180.
    4. Zhao, Pengjun & Zhang, Yixue, 2018. "Travel behaviour and life course: Examining changes in car use after residential relocation in Beijing," Journal of Transport Geography, Elsevier, vol. 73(C), pages 41-53.
    5. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    6. Laviolette, Jérôme & Morency, Catherine & Waygood, E.O.D., 2022. "A kilometer or a mile? Does buffer size matter when it comes to car ownership?," Journal of Transport Geography, Elsevier, vol. 104(C).
    7. Shen, Qing & Chen, Peng & Pan, Haixiao, 2016. "Factors affecting car ownership and mode choice in rail transit-supported suburbs of a large Chinese city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 31-44.
    8. Huang, Xiaoyan & (Jason) Cao, Xinyu & Yin, Jiangbin & Cao, Xiaoshu, 2019. "Can metro transit reduce driving? Evidence from Xi'an, China," Transport Policy, Elsevier, vol. 81(C), pages 350-359.
    9. Chowdhury, Tufayel & Scott, Darren M., 2020. "An analysis of the built environment and auto travel in Halifax, Canada," Transport Policy, Elsevier, vol. 94(C), pages 23-33.
    10. Chaoying Yin & Chunfu Shao & Xiaoquan Wang, 2018. "Built Environment and Parking Availability: Impacts on Car Ownership and Use," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    11. Ding, Chuan & Cao, Xinyu, 2019. "How does the built environment at residential and work locations affect car ownership? An application of cross-classified multilevel model," Journal of Transport Geography, Elsevier, vol. 75(C), pages 37-45.
    12. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chengxiang Zhuge, 2018. "Exploring the Influence of Built Environment on Car Ownership and Use with a Spatial Multilevel Model: A Case Study of Changchun, China," IJERPH, MDPI, vol. 15(9), pages 1-14, August.
    13. Wang, Xiaoquan & Yin, Chaoying & Zhang, Junyi & Shao, Chunfu & Wang, Shengyou, 2021. "Nonlinear effects of residential and workplace built environment on car dependence," Journal of Transport Geography, Elsevier, vol. 96(C).
    14. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    15. Yi Zhang & Wei Wu & Yuan Li & Qixing Liu & Chaoyang Li, 2014. "Does the Built Environment Make a Difference? An Investigation of Household Vehicle Use in Zhongshan Metropolitan Area, China," Sustainability, MDPI, vol. 6(8), pages 1-21, August.
    16. Guan, Xiaodong & Wang, Donggen, 2020. "The multiplicity of self-selection: What do travel attitudes influence first, residential location or work place?," Journal of Transport Geography, Elsevier, vol. 87(C).
    17. Mitra, Suman K. & Saphores, Jean-Daniel M., 2017. "Carless in California: Green choice or misery?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 1-12.
    18. Sabreena Anowar & Naveen Eluru & Luis F. Miranda-Moreno, 2014. "Alternative Modeling Approaches Used for Examining Automobile Ownership: A Comprehensive Review," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 441-473, July.
    19. Ding, Chuan & Zhou, Xinyu & Jason Cao, Xinyu & Yang, Jiawen, 2023. "Spatial and mediation analysis of the influences of residential and workplace built environments on commuting by car," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    20. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1566-:d:146298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.