IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v69y2018icp181-195.html
   My bibliography  Save this article

Causality, not just correlation: Residential location, transport rationales and travel behavior across metropolitan contexts

Author

Listed:
  • Næss, Petter
  • Peters, Sebastian
  • Stefansdottir, Harpa
  • Strand, Arvid

Abstract

The literature on relationships between the built environment and travel is extensive, but the vast majority of such studies relies solely on statistical analyses of travel survey data, with limited possibilities for establishing causality. This article presents insights from in-depth qualitative research, offering stronger evidence of causal influences than in mainstream studies on the built environment and travel. Analyzing 33 qualitative interviews, the paper explains causal mechanisms underlying differences between inner-city and suburban residents' travel behavior observed in the Norwegian metropolitan areas of Oslo and Stavanger and in several earlier studies. We argue that built environment characteristics influence travel through their interplay with inhabitants' rationales for location of activities and travel mode choice. The interviewees' main rationales for activity locations, choosing the best facility and minimizing the friction of distance, are often traded off against each other. Inner-city residents can still be selective about the quality of the facility without needing to travel a long distance, since many potential facilities are often available within short distance from the dwelling. For suburbanites, choosing the best facility more often requires acceptance of longer travel distances. This is still context-dependent, depending on the center structure of the city. The interviewees' rationales for travel mode choice are, together with time-geographical constraints, an important part of the explanation why suburbanites tend to travel much more frequently by car than inner-city residents do. Those who need to overcome long distances to reach daily destinations need fast means of transportation, and therefore consider themselves more car-dependent. The similarity of the transport rationales found in this study with rationales identified in other studies in different city contexts suggests a high degree of generality in the basic mechanisms through which urban form influences travel behavior.

Suggested Citation

  • Næss, Petter & Peters, Sebastian & Stefansdottir, Harpa & Strand, Arvid, 2018. "Causality, not just correlation: Residential location, transport rationales and travel behavior across metropolitan contexts," Journal of Transport Geography, Elsevier, vol. 69(C), pages 181-195.
  • Handle: RePEc:eee:jotrge:v:69:y:2018:i:c:p:181-195
    DOI: 10.1016/j.jtrangeo.2018.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692317307317
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2018.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harpa Stefansdottir, 2018. "The role of urban atmosphere for non-work activity locations," Journal of Urban Design, Taylor & Francis Journals, vol. 23(3), pages 319-335, May.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Patricia L. Mokhtarian & Michael N. Bagley, 2002. "The impact of residential neighborhood type on travel behavior: A structural equations modeling approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 36(2), pages 279-297.
    4. Susan Handy, 2017. "Thoughts on the Meaning of Mark Stevens’s Meta-Analysis," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 26-28, January.
    5. Petter NÆss & Ole Jensen, 2004. "Urban structure matters, even in a small town," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 47(1), pages 35-57.
    6. McQuoid, Julia & Dijst, Martin, 2012. "Bringing emotions to time geography: the case of mobilities of poverty," Journal of Transport Geography, Elsevier, vol. 23(C), pages 26-34.
    7. Mark R. Stevens, 2017. "Response to Commentaries on “Does Compact Development Make People Drive Less?”," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(2), pages 151-158, April.
    8. Mark R. Stevens, 2017. "Does Compact Development Make People Drive Less?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 7-18, January.
    9. Christopher Zegras, 2010. "The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile," Urban Studies, Urban Studies Journal Limited, vol. 47(8), pages 1793-1817, July.
    10. Wolday, Fitwi & Cao, Jason & Næss, Petter, 2018. "Examining factors that keep residents with high transit preference away from transit-rich zones and associated behavior outcomes," Journal of Transport Geography, Elsevier, vol. 66(C), pages 224-234.
    11. Tim Schwanen, 2008. "Managing Uncertain Arrival Times through Sociomaterial Associations," Environment and Planning B, , vol. 35(6), pages 997-1011, December.
    12. Sui, Daniel, 2012. "Looking through Hägerstrand’s dual vistas: towards a unifying framework for time geography," Journal of Transport Geography, Elsevier, vol. 23(C), pages 5-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Li & Zhao, Juanjuan & Zhang, Jun & Zhang, Fan & Ye, Kejiang & Xu, Chengzhong, 2024. "Activity-based individual travel regularity exploring with entropy-space K-means clustering using smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    2. Mouratidis, Kostas & Ettema, Dick & Næss, Petter, 2019. "Urban form, travel behavior, and travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 306-320.
    3. Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    4. Jianming Le & Kunhui Ye, 2022. "Measuring City-Level Transit Accessibility Based on the Weight of Residential Land Area: A Case of Nanning City, China," Land, MDPI, vol. 11(9), pages 1-17, September.
    5. Kun-Kuang Wu & Chun-Chang Lee & Chih-Min Liang & Wen-Chih Yeh & Zheng Yu, 2020. "Exploring the Factors Influencing Kaohsiung Residents’ Intentions to Choose Age-Friendly Housing," IJERPH, MDPI, vol. 17(21), pages 1-21, October.
    6. Petter Næss & Anders Tønnesen & Fitwi Wolday, 2019. "How and Why Does Intra-Metropolitan Workplace Location Affect Car Commuting?," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    7. Næss, Petter & Xue, Jin & Stefansdottir, Harpa & Steffansen, Rasmus & Richardson, Tim, 2019. "Second home mobility, climate impacts and travel modes: Can sustainability obstacles be overcome?," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    8. Martin Loidl & Dana Kaziyeva & Robin Wendel & Claudia Luger-Bazinger & Matthias Seeber & Charalampos Stamatopoulos, 2023. "Unlocking the Potential of Digital, Situation-Aware Nudging for Promoting Sustainable Mobility," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    9. Michał Czepkiewicz & Áróra Árnadóttir & Jukka Heinonen, 2019. "Flights Dominate Travel Emissions of Young Urbanites," Sustainability, MDPI, vol. 11(22), pages 1-35, November.
    10. Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    11. Volker, Jamey M B, 2020. "Exploring the Changing Faces of Housing Development and Demand in California: Millennials, Casitas, and Reducing VMT," Institute of Transportation Studies, Working Paper Series qt6p94s5mc, Institute of Transportation Studies, UC Davis.
    12. Petter Næss & Harpa Stefansdottir & Sebastian Peters & Michał Czepkiewicz & Jukka Heinonen, 2021. "Residential Location and Travel in the Reykjavik Capital Region," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    13. Lubitow, Amy & Abelson, Miriam J. & Carpenter, Erika, 2020. "Transforming mobility justice: Gendered harassment and violence on transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    14. Beibei Hu & Yue Sun & Huijun Sun & Xianlei Dong, 2020. "A Contrastive Study on Travel Costs of Car-Sharing and Taxis Based on GPS Trajectory Data," IJERPH, MDPI, vol. 17(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    2. Donggen Wang & Tao Lin, 2019. "Built environment, travel behavior, and residential self-selection: a study based on panel data from Beijing, China," Transportation, Springer, vol. 46(1), pages 51-74, February.
    3. Petter Næss & Anders Tønnesen & Fitwi Wolday, 2019. "How and Why Does Intra-Metropolitan Workplace Location Affect Car Commuting?," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    4. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    5. Mouratidis, Kostas & Ettema, Dick & Næss, Petter, 2019. "Urban form, travel behavior, and travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 306-320.
    6. Miotti, Marco & Needell, Zachary A. & Jain, Rishee K., 2023. "The impact of urban form on daily mobility demand and energy use: Evidence from the United States," Applied Energy, Elsevier, vol. 339(C).
    7. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    8. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    9. Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
    10. Liu, Jixiang & Wang, Bo & Xiao, Longzhu, 2021. "Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach," Journal of Transport Geography, Elsevier, vol. 92(C).
    11. Rahman, Mashrur & Sciara, Gian-Claudia, 2022. "Travel attitudes, the built environment and travel behavior relationships: Causal insights from social psychology theories," Transport Policy, Elsevier, vol. 123(C), pages 44-54.
    12. Arefeh Nasri & Carlos Carrion & Lei Zhang & Babak Baghaei, 2020. "Using propensity score matching technique to address self-selection in transit-oriented development (TOD) areas," Transportation, Springer, vol. 47(1), pages 359-371, February.
    13. Erik Elldér & Katarina Haugen & Bertil Vilhelmson, 2022. "When local access matters: A detailed analysis of place, neighbourhood amenities and travel choice," Urban Studies, Urban Studies Journal Limited, vol. 59(1), pages 120-139, January.
    14. Petter Næss & Harpa Stefansdottir & Sebastian Peters & Michał Czepkiewicz & Jukka Heinonen, 2021. "Residential Location and Travel in the Reykjavik Capital Region," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    15. Ding, Chuan & Cao, Xinyu & Wang, Yunpeng, 2018. "Synergistic effects of the built environment and commuting programs on commute mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 104-118.
    16. Mitra, Suman K. & Saphores, Jean-Daniel M., 2017. "Carless in California: Green choice or misery?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 1-12.
    17. Ashik, F.R. & Sreezon, A.I.Z. & Rahman, M.H. & Zafri, N.M. & Labib, S.M., 2024. "Built environment influences commute mode choice in a global south megacity context: Insights from explainable machine learning approach," Journal of Transport Geography, Elsevier, vol. 116(C).
    18. Martín, Belén & Páez, Antonio, 2019. "Individual and geographic variations in the propensity to travel by active modes in Vitoria-Gasteiz, Spain," Journal of Transport Geography, Elsevier, vol. 76(C), pages 103-113.
    19. Tao, Tao & Cao, Jason, 2023. "Exploring nonlinear and collective influences of regional and local built environment characteristics on travel distances by mode," Journal of Transport Geography, Elsevier, vol. 109(C).
    20. Guerra, Erick & Caudillo, Camilo & Monkkonen, Paavo & Montejano, Jorge, 2018. "Urban form, transit supply, and travel behavior in Latin America: Evidence from Mexico's 100 largest urban areas," Transport Policy, Elsevier, vol. 69(C), pages 98-105.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:69:y:2018:i:c:p:181-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.