IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4567-d260078.html
   My bibliography  Save this article

Control Strategy Optimization for Two-Lane Highway Lane-Closure Work Zones

Author

Listed:
  • Xuedong Hua

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 210096, China)

  • YinHai Wang

    (Department of Civil & Environmental Engineering, University of Washington, Seattle, WA 98125, USA)

  • Weijie Yu

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 210096, China)

  • Wenbo Zhu

    (Department of Civil & Environmental Engineering, University of Washington, Seattle, WA 98125, USA)

  • Wei Wang

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 210096, China)

Abstract

Traffic control is very important for two-lane highway lane-closure work zone traffic management. Control of the open lane’s right of way is very similar to that of a two-phase signalized intersection. Thus, four control strategies including flagger control, pre-timed control proposed by Schonfeld, pre-timed control proposed by Webster, and actuated control are employed for possible use at work zones. Two primary methodologies, the mathematical delay model adopted from signalized intersections, and the simulation model calibrated with field data, are proposed. The simulation and mathematical results show that control strategies for two one-way road intersections could be used for two-lane highway lane-closure work zones. Flagger control after gap-out distance optimization prevails over all the other control strategies in terms of stopped delay, queue length, and throughput, under low or high volumes. Actuated control could be a good alternative for work zone areas due to its small queue length and large vehicle throughput under moderate volume conditions. Our findings may help to optimize the work-zone control strategy and improve operational efficiency at two-lane highway lane-closure work zones.

Suggested Citation

  • Xuedong Hua & YinHai Wang & Weijie Yu & Wenbo Zhu & Wei Wang, 2019. "Control Strategy Optimization for Two-Lane Highway Lane-Closure Work Zones," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4567-:d:260078
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Hamilton & Ben Waterson & Tom Cherrett & Andrew Robinson & Ian Snell, 2013. "The evolution of urban traffic control: changing policy and technology," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(1), pages 24-43, February.
    2. Cassidy, Michael J. & Son, YoungTae & Rosowsky, David V., 1994. "Estimating motorist delay at two-lane highway work zones," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(5), pages 433-444, September.
    3. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    4. Cheng Cheng & Yuchuan Du & Lijun Sun & Yuxiong Ji, 2016. "Review on Theoretical Delay Estimation Model for Signalized Intersections," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 479-499, July.
    5. Dion, Francois & Rakha, Hesham & Kang, Youn-Soo, 2004. "Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 99-122, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongtao Zheng & Xuedong Hua & Wei Wang & Jialiang Xiao & Dongya Li, 2020. "Analysis of a Signalized Intersection with Dynamic Use of the Left-Turn Lane for Opposite through Traffic," Sustainability, MDPI, vol. 12(18), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. António Pacheco & Maria Lurdes Simões Simões & Paula Milheiro-Oliveira, 2017. "Queues with Server Vacations as a Model for Pretimed Signalized Urban Traffic," Transportation Science, INFORMS, vol. 51(3), pages 841-851, August.
    2. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    3. Boon, Marko A.A. & van Leeuwaarden, Johan S.H., 2018. "Networks of fixed-cycle intersections," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 254-271.
    4. Cho, Hsun-Jung & Tseng, Ming-Te & Hwang, Ming-Chorng, 2014. "Using detection of vehicular presence to estimate shockwave speed and upstream traffics for a signalized intersection," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1151-1165.
    5. Yining Lu & Tao Wang & Zhuangzhuang Wang & Chaoyang Li & Yi Zhang, 2022. "Modeling the Dynamic Exclusive Pedestrian Phase Based on Transportation Equity and Cost Analysis," IJERPH, MDPI, vol. 19(13), pages 1-20, July.
    6. Evers, Ruth & Proost, Stef, 2015. "The myth of traffic-responsive signal control: Why common sense does not always make sense," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 350-357.
    7. Grote, Matt & Waterson, Ben & Rudolph, Felix, 2021. "The impact of strategic transport policies on future urban traffic management systems," Transport Policy, Elsevier, vol. 110(C), pages 402-414.
    8. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    9. Richard L. Warr & Cason J. Wight, 2020. "Error Bounds for Cumulative Distribution Functions of Convolutions via the Discrete Fourier Transform," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 881-904, September.
    10. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    11. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    12. Jia Shi & Xuesong Guo & Xiangnan Hu, 2019. "Engaging Stakeholders in Urban Traffic Restriction Policy Assessment Using System Dynamics: The Case Study of Xi’an City, China," Sustainability, MDPI, vol. 11(14), pages 1-16, July.
    13. Cheng, Qixiu & Liu, Zhiyuan & Lu, Jiawei & List, George & Liu, Pan & Zhou, Xuesong Simon, 2024. "Using frequency domain analysis to elucidate travel time reliability along congested freeway corridors," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    14. Yin, Yafeng, 2008. "Robust optimal traffic signal timing," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 911-924, December.
    15. Sjoerd van der Spoel & Chintan Amrit & Jos van Hillegersberg, 2017. "Predictive analytics for truck arrival time estimation: a field study at a European distribution centre," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5062-5078, September.
    16. Ng, ManWo & Khattak, Asad & Talley, Wayne K., 2013. "Modeling the time to the next primary and secondary incident: A semi-Markov stochastic process approach," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 44-57.
    17. Li, Tongfei & Cao, Yaning & Xu, Min & Sun, Huijun, 2023. "Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    18. Ng, ManWo, 2012. "Synergistic sensor location for link flow inference without path enumeration: A node-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 781-788.
    19. Nam Seok Kim & Seung Sub Yoon & Donghyung Yook, 2017. "Performance comparison between pedestrian push-button and pre-timed pedestrian crossings at midblock: a Korean case study," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(6), pages 706-721, August.
    20. Xu, Xiangdong & Chen, Anthony & Cheng, Lin & Yang, Chao, 2017. "A link-based mean-excess traffic equilibrium model under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 53-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4567-:d:260078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.