IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v22y2020i3d10.1007_s11009-019-09739-z.html
   My bibliography  Save this article

Error Bounds for Cumulative Distribution Functions of Convolutions via the Discrete Fourier Transform

Author

Listed:
  • Richard L. Warr

    (Brigham Young University)

  • Cason J. Wight

    (Brigham Young University)

Abstract

In statistical theory, convolutions are often avoided in favor of asymptotic approximation or simulation. Much of this is due to the fact that convolution is a challenging problem. With abundant computational resources, numerical convolution is a more viable option than in past decades. This paper proposes mathematical error bounds for the cumulative distribution function of the convolution of a finite number of independent univariate random variables. The discrete Fourier transform and its companion, the inverse discrete Fourier transform, are used to provide fast and easily obtainable mathematical error bounds for these convolutions. Examples and applications are provided to demonstrate a few possible uses of the error bounds.

Suggested Citation

  • Richard L. Warr & Cason J. Wight, 2020. "Error Bounds for Cumulative Distribution Functions of Convolutions via the Discrete Fourier Transform," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 881-904, September.
  • Handle: RePEc:spr:metcap:v:22:y:2020:i:3:d:10.1007_s11009-019-09739-z
    DOI: 10.1007/s11009-019-09739-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-019-09739-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-019-09739-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grübel, Rudolf & Hermesmeier, Renate, 2000. "Computation of Compound Distributions II: Discretization Errors and Richardson Extrapolation," ASTIN Bulletin, Cambridge University Press, vol. 30(2), pages 309-331, November.
    2. Ashraf Ben El‐Shanawany & Keith H. Ardron & Simon P. Walker, 2018. "Lognormal Approximations of Fault Tree Uncertainty Distributions," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1576-1584, August.
    3. Richard L. Warr, 2014. "Numerical Approximation of Probability Mass Functions via the Inverse Discrete Fourier Transform," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 1025-1038, December.
    4. Ruckdeschel, Peter & Kohl, Matthias, 2014. "General Purpose Convolution Algorithm in S4 Classes by Means of FFT," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i04).
    5. Grübel, Rudolf & Hermesmeier, Renate, 1999. "Computation of Compound Distributions I: Aliasing Errors and Exponential Tilting," ASTIN Bulletin, Cambridge University Press, vol. 29(2), pages 197-214, November.
    6. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    7. Joseph Abate & Ward Whitt, 1995. "Numerical Inversion of Laplace Transforms of Probability Distributions," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 36-43, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeriy A. Naumov & Yuliya V. Gaidamaka & Konstantin E. Samouylov, 2020. "Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform," Mathematics, MDPI, vol. 8(5), pages 1-9, May.
    2. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    3. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    4. Yera, Yoel G. & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2019. "Fitting procedure for the two-state Batch Markov modulated Poisson process," European Journal of Operational Research, Elsevier, vol. 279(1), pages 79-92.
    5. He, Gang & Wu, Wenqing & Zhang, Yuanyuan, 2018. "Analysis of a multi-component system with failure dependency, N-policy and vacations," Operations Research Perspectives, Elsevier, vol. 5(C), pages 191-198.
    6. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. David H Collins & Richard L Warr & Aparna V Huzurbazar, 2013. "An introduction to statistical flowgraph models for engineering systems," Journal of Risk and Reliability, , vol. 227(5), pages 461-470, October.
    8. C. E. Phelan & D. Marazzina & G. Germano, 2020. "Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 899-918, June.
    9. Harrison, Peter G., 2024. "On the numerical solution of functional equations with application to response time distributions," Applied Mathematics and Computation, Elsevier, vol. 472(C).
    10. Joseph Abate & Ward Whitt, 1999. "Computing Laplace Transforms for Numerical Inversion Via Continued Fractions," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 394-405, November.
    11. Dassios, Angelos & Zhang, You You, 2016. "The joint distribution of Parisian and hitting times of the Brownian motion with application to Parisian option pricing," LSE Research Online Documents on Economics 64959, London School of Economics and Political Science, LSE Library.
    12. Dirk Becherer & Todor Bilarev & Peter Frentrup, 2018. "Optimal liquidation under stochastic liquidity," Finance and Stochastics, Springer, vol. 22(1), pages 39-68, January.
    13. John F. Shortle & Martin J. Fischer & Percy H. Brill, 2007. "Waiting-Time Distribution of M/D N /1 Queues Through Numerical Laplace Inversion," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 112-120, February.
    14. Jeffrey P. Kharoufeh & Natarajan Gautam, 2004. "A fluid queueing model for link travel time moments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(2), pages 242-257, March.
    15. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    16. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2024. "Efficient inverse $Z$-transform and Wiener-Hopf factorization," Papers 2404.19290, arXiv.org, revised May 2024.
    17. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    18. Abdel Belkaid & Frederic Utzet, 2017. "Efficient Computation of First Passage Times in Kou’s Jump-diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 957-971, September.
    19. Steven Kou & Cindy Yu & Haowen Zhong, 2017. "Jumps in Equity Index Returns Before and During the Recent Financial Crisis: A Bayesian Analysis," Management Science, INFORMS, vol. 63(4), pages 988-1010, April.
    20. J. Li & A. Metzler & R. M. Reesor, 2017. "A structural framework for modelling contingent capital," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1071-1088, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:22:y:2020:i:3:d:10.1007_s11009-019-09739-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.