IDEAS home Printed from https://ideas.repec.org/a/taf/transr/v36y2016i4p479-499.html
   My bibliography  Save this article

Review on Theoretical Delay Estimation Model for Signalized Intersections

Author

Listed:
  • Cheng Cheng
  • Yuchuan Du
  • Lijun Sun
  • Yuxiong Ji

Abstract

Traffic delay is an effective index for estimating the performance of a signalized intersection. In this study, we provide a comprehensive review of the theoretical delay estimation model over the last ca. 90 years. For fixed-time signalized intersections, we classified the estimation development process into three stages. Stage 1 covered 1920s--1970s, when approaches based on steady-state theory were derived. These methods obtain accurate predictions with low degrees of saturation, but overestimate the delay with higher saturation and cannot provide reasonable results for oversaturated conditions. To accommodate high saturation, time-dependent models were proposed and improved in Stage 2, 1970s--2000s, using coordination transformation techniques. Progression factors to account for the filtering impact from upstream intersections were also introduced during this period. Due to inaccurate approximation of certain specific traffic conditions, some modified approaches and supplementary terms were derived from 2000 onwards (Stage 3), which facilitate the evolution of the delay estimation method and improved approximation results. Some new techniques, including artificial intelligence algorithms, were also introduced into delay estimation in this era. We also describe theoretical delay measurement methods for actuated control intersections with a similar time line. From our summary of the evolution of theoretical delay models, we highlight some deficiencies and future research directions.

Suggested Citation

  • Cheng Cheng & Yuchuan Du & Lijun Sun & Yuxiong Ji, 2016. "Review on Theoretical Delay Estimation Model for Signalized Intersections," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 479-499, July.
  • Handle: RePEc:taf:transr:v:36:y:2016:i:4:p:479-499
    DOI: 10.1080/01441647.2015.1091048
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01441647.2015.1091048
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01441647.2015.1091048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    2. Xuedong Hua & YinHai Wang & Weijie Yu & Wenbo Zhu & Wei Wang, 2019. "Control Strategy Optimization for Two-Lane Highway Lane-Closure Work Zones," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    3. Li, Tongfei & Cao, Yaning & Xu, Min & Sun, Huijun, 2023. "Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    4. Wada, Kentaro & Usui, Kento & Takigawa, Tsubasa & Kuwahara, Masao, 2018. "An optimization modeling of coordinated traffic signal control based on the variational theory and its stochastic extension," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 907-925.
    5. António Pacheco & Maria Lurdes Simões Simões & Paula Milheiro-Oliveira, 2017. "Queues with Server Vacations as a Model for Pretimed Signalized Urban Traffic," Transportation Science, INFORMS, vol. 51(3), pages 841-851, August.
    6. Yang, Bo & Wang, Chunsheng & Cao, Yuan & Yang, Qiaoli, 2024. "Modeling and evaluating the impact of variable bus lane on isolated signal intersection performance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transr:v:36:y:2016:i:4:p:479-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TTRV20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.