IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3992-d250947.html
   My bibliography  Save this article

Estimation and Analysis of Vehicle Exhaust Emissions at Signalized Intersections Using a Car-Following Model

Author

Listed:
  • Hongxing Zhao

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Ruichun He

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Xiaoyan Jia

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

A signalized intersection is a high fuel consumption and high emission node of a traffic network. It is necessary to study the emission characteristics of vehicles at signalized intersections in order to reduce vehicle emissions. In this study, the combination of a car-following model and the vehicle specific power emission model was used to estimate the vehicle emissions, including the CO 2 , CO, HC, and nitric oxide (NO X ) emissions, at unsaturated signalized intersections. The results of simulations show that, under the influence of the signal light, the substantial changes in a vehicle’s trajectory increase the CO 2 , CO, HC, and NO X emissions. The CO 2 , CO, HC, and NO X emissions from vehicles at signalized intersections were further analyzed in terms of signal timing, vehicle arrival rate, traffic interference, and road section speed. The results show that an increase in the signal cycle, the vehicle arrival rate, and the traffic interference amplitude result in increases in the CO 2 , CO, HC, and NO X emissions per vehicle at the intersection inbound approach, and an increase in the green signal ratio and the vehicle road section speed within a specified range has a positive significance for reducing the CO 2 , CO, HC, and NO X emissions of vehicles in the study range. The proposed method can be flexibly applied to the analysis of vehicle emissions at unsaturated signalized intersections. The obtained results provide a reference for the control and management of signalized intersections.

Suggested Citation

  • Hongxing Zhao & Ruichun He & Xiaoyan Jia, 2019. "Estimation and Analysis of Vehicle Exhaust Emissions at Signalized Intersections Using a Car-Following Model," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3992-:d:250947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniela Dias & António Pais Antunes & Oxana Tchepel, 2019. "Modelling of Emissions and Energy Use from Biofuel Fuelled Vehicles at Urban Scale," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
    2. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    3. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    4. G. F. Newell, 2002. "Memoirs on Highway Traffic Flow Theory in the 1950s," Operations Research, INFORMS, vol. 50(1), pages 173-178, February.
    5. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    6. Tang, Tie-Qiao & Yi, Zhi-Yan & Lin, Qing-Feng, 2017. "Effects of signal light on the fuel consumption and emissions under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 200-205.
    7. Zhang, Xuan & Jia, Bin & Jiang, Rui, 2018. "Impact of safety assistance driving systems on oscillation magnitude, fuel consumption and emission in a car platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 995-1007.
    8. Denos C. Gazis, 2002. "The Origins of Traffic Theory," Operations Research, INFORMS, vol. 50(1), pages 69-77, February.
    9. Yu, Shaowei & Shi, Zhongke, 2015. "An improved car-following model considering headway changes with memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 1-14.
    10. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    11. Yaping Dong & Jinliang Xu & Xingliang Liu & Chao Gao & Han Ru & Zhihao Duan, 2019. "Carbon Emissions and Expressway Traffic Flow Patterns in China," Sustainability, MDPI, vol. 11(10), pages 1-12, May.
    12. Robert Herman & Elliott W. Montroll & Renfrey B. Potts & Richard W. Rothery, 1959. "Traffic Dynamics: Analysis of Stability in Car Following," Operations Research, INFORMS, vol. 7(1), pages 86-106, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Wang & Jian Rong & Chenjing Zhou & Xin Chang & Siyang Liu, 2020. "An Analysis of the Interactions between Adjustment Factors of Saturation Flow Rates at Signalized Intersections," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    2. Ramadan Duraku & Diellza Boshnjaku, 2024. "Enhancing Traffic Sustainability: An Analysis of Isolation Intersection Effectiveness through Fixed Time and Logic Control Design Using VisVAP Algorithm," Sustainability, MDPI, vol. 16(7), pages 1-28, April.
    3. Sun, Bin & Zhang, Qijun & Wei, Ning & Jia, Zhenyu & Li, Chunming & Mao, Hongjun, 2022. "The energy flow of moving vehicles for different traffic states in the intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    4. Rachid Marzoug & Noureddine Lakouari & José Roberto Pérez Cruz & Carlos Jesahel Vega Gómez, 2022. "Cellular Automata Model for Analysis and Optimization of Traffic Emission at Signalized Intersection," Sustainability, MDPI, vol. 14(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    2. Zhou, Zhi & Li, Linheng & Qu, Xu & Ran, Bin, 2024. "A self-adaptive IDM car-following strategy considering asymptotic stability and damping characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    4. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    5. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.
    6. Pei, Xin & Pan, Yan & Wang, Haixin & Wong, S.C. & Choi, Keechoo, 2016. "Empirical evidence and stability analysis of the linear car-following model with gamma-distributed memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 311-323.
    7. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    8. Zhang, Xiangzhou & Shi, Zhongke & Chen, Jianzhong & Ma, lijing, 2023. "A bi-directional visual angle car-following model considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Piyush Dhawankar & Prashant Agrawal & Bilal Abderezzak & Omprakash Kaiwartya & Krishna Busawon & Maria Simona Raboacă, 2021. "Design and Numerical Implementation of V2X Control Architecture for Autonomous Driving Vehicles," Mathematics, MDPI, vol. 9(14), pages 1-24, July.
    10. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    11. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    12. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    13. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    14. Daiheng Ni & John D. Leonard & Chaoqun Jia & Jianqiang Wang, 2016. "Vehicle Longitudinal Control and Traffic Stream Modeling," Transportation Science, INFORMS, vol. 50(3), pages 1016-1031, August.
    15. Zhang, Xiaoyan & Jarrett, David F., 1997. "Stability analysis of the classical car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 441-462, November.
    16. Yu, Shaowei & Huang, Mengxing & Ren, Jia & Shi, Zhongke, 2016. "An improved car-following model considering velocity fluctuation of the immediately ahead car," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 1-17.
    17. Montanino, Marcello & Punzo, Vincenzo, 2021. "On string stability of a mixed and heterogeneous traffic flow: A unifying modelling framework," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 133-154.
    18. Wang, Pengcheng & Yu, Guizhen & Wu, Xinkai & Qin, Hongmao & Wang, Yunpeng, 2018. "An extended car-following model to describe connected traffic dynamics under cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 351-370.
    19. Alireza Mostafizi & Haizhong Wang & Dan Cox & Lori A. Cramer & Shangjia Dong, 2017. "Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1347-1372, September.
    20. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3992-:d:250947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.