IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v260y2017i1p283-290.html
   My bibliography  Save this article

Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes

Author

Listed:
  • Cafieri, Sonia
  • Omheni, Riadh

Abstract

We consider the problem of aircraft conflict avoidance in Air Traffic Management systems. Given an initial configuration of a number of aircraft sharing the same airspace, the main goal of conflict avoidance is to guarantee that a minimum safety distance between each pair of aircraft is always respected during their flights. We consider aircraft separation achieved by heading angle deviations, and propose a mixed 0–1 nonlinear optimization model, that is then combined with another one which is based on aircraft speed regulation. A two-step solution approach is proposed, where the two models are sequentially solved using a state-of-the-art mixed-integer nonlinear programming solver. Numerical results validate the proposed approach and clearly show the benefit of combining the two considered separation maneuvers.

Suggested Citation

  • Cafieri, Sonia & Omheni, Riadh, 2017. "Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes," European Journal of Operational Research, Elsevier, vol. 260(1), pages 283-290.
  • Handle: RePEc:eee:ejores:v:260:y:2017:i:1:p:283-290
    DOI: 10.1016/j.ejor.2016.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716310293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Rey & Christophe Rapine & Rémy Fondacci & Nour-Eddin El Faouzi, 2016. "Subliminal Speed Control in Air Traffic Management: Optimization and Simulation," Transportation Science, INFORMS, vol. 50(1), pages 240-262, February.
    2. Peyronne, Clément & Conn, Andrew R. & Mongeau, Marcel & Delahaye, Daniel, 2015. "Solving air traffic conflict problems via local continuous optimization," European Journal of Operational Research, Elsevier, vol. 241(2), pages 502-512.
    3. Ruth Misener & Christodoulos Floudas, 2014. "ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations," Journal of Global Optimization, Springer, vol. 59(2), pages 503-526, July.
    4. Sonia Cafieri & Nicolas Durand, 2014. "Aircraft deconfliction with speed regulation: new models from mixed-integer optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 613-629, April.
    5. Michael R. Bussieck & Arne Stolbjerg Drud & Alexander Meeraus, 2003. "MINLPLib—A Collection of Test Models for Mixed-Integer Nonlinear Programming," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 114-119, February.
    6. Antonio Alonso-Ayuso & Laureano F. Escudero & F. Javier Martín-Campo, 2016. "Exact and Approximate Solving of the Aircraft Collision Resolution Problem via Turn Changes," Transportation Science, INFORMS, vol. 50(1), pages 263-274, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Cerulli & Claudia D’Ambrosio & Leo Liberti & Mercedes Pelegrín, 2021. "Detecting and solving aircraft conflicts using bilevel programming," Journal of Global Optimization, Springer, vol. 81(2), pages 529-557, October.
    2. Md Saiful Islam & Md Sarowar Morshed & Md. Noor-E-Alam, 2022. "A Computational Framework for Solving Nonlinear Binary Optimization Problems in Robust Causal Inference," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3023-3041, November.
    3. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    4. Fernando Dias & David Rey, 2024. "Aircraft conflict resolution with trajectory recovery using mixed-integer programming," Journal of Global Optimization, Springer, vol. 90(4), pages 1031-1067, December.
    5. Dias, Fernando H.C. & Hijazi, Hassan & Rey, David, 2022. "Disjunctive linear separation conditions and mixed-integer formulations for aircraft conflict resolution," European Journal of Operational Research, Elsevier, vol. 296(2), pages 520-538.
    6. Cafieri, Sonia & Conn, Andrew R. & Mongeau, Marcel, 2023. "Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations," European Journal of Operational Research, Elsevier, vol. 310(2), pages 670-679.
    7. Sonia Cafieri & Claudia D’Ambrosio, 2018. "Feasibility pump for aircraft deconfliction with speed regulation," Journal of Global Optimization, Springer, vol. 71(3), pages 501-515, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cafieri, Sonia & Conn, Andrew R. & Mongeau, Marcel, 2023. "Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations," European Journal of Operational Research, Elsevier, vol. 310(2), pages 670-679.
    2. Sonia Cafieri & Claudia D’Ambrosio, 2018. "Feasibility pump for aircraft deconfliction with speed regulation," Journal of Global Optimization, Springer, vol. 71(3), pages 501-515, July.
    3. Fernando Dias & David Rey, 2024. "Aircraft conflict resolution with trajectory recovery using mixed-integer programming," Journal of Global Optimization, Springer, vol. 90(4), pages 1031-1067, December.
    4. Mercedes Pelegrín & Martina Cerulli, 2023. "Aircraft Conflict Resolution: A Benchmark Generator," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 274-285, March.
    5. Carlos J. Nohra & Nikolaos V. Sahinidis, 2018. "Global optimization of nonconvex problems with convex-transformable intermediates," Journal of Global Optimization, Springer, vol. 72(2), pages 255-276, October.
    6. Martina Cerulli & Claudia D’Ambrosio & Leo Liberti & Mercedes Pelegrín, 2021. "Detecting and solving aircraft conflicts using bilevel programming," Journal of Global Optimization, Springer, vol. 81(2), pages 529-557, October.
    7. Antonio Alonso-Ayuso & Laureano F. Escudero & F. Javier Martín-Campo, 2016. "Exact and Approximate Solving of the Aircraft Collision Resolution Problem via Turn Changes," Transportation Science, INFORMS, vol. 50(1), pages 263-274, February.
    8. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    9. Kai Zhou & Mustafa R. Kılınç & Xi Chen & Nikolaos V. Sahinidis, 2018. "An efficient strategy for the activation of MIP relaxations in a multicore global MINLP solver," Journal of Global Optimization, Springer, vol. 70(3), pages 497-516, March.
    10. Jaromił Najman & Dominik Bongartz & Alexander Mitsos, 2021. "Linearization of McCormick relaxations and hybridization with the auxiliary variable method," Journal of Global Optimization, Springer, vol. 80(4), pages 731-756, August.
    11. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2022. "Superstructure-based mixed-integer nonlinear programming framework for hybrid heat sources driven organic Rankine cycle optimization," Applied Energy, Elsevier, vol. 307(C).
    12. Iosif Pappas & Nikolaos A. Diangelakis & Efstratios N. Pistikopoulos, 2021. "The exact solution of multiparametric quadratically constrained quadratic programming problems," Journal of Global Optimization, Springer, vol. 79(1), pages 59-85, January.
    13. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    14. Fränk Plein & Johannes Thürauf & Martine Labbé & Martin Schmidt, 2022. "A bilevel optimization approach to decide the feasibility of bookings in the European gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(3), pages 409-449, June.
    15. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    16. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    17. Chen, Yunxiang & Zhao, Yifei & Wu, Yexin, 2024. "Recent progress in air traffic flow management: A review," Journal of Air Transport Management, Elsevier, vol. 116(C).
    18. Pavlo Muts & Ivo Nowak & Eligius M. T. Hendrix, 2020. "The decomposition-based outer approximation algorithm for convex mixed-integer nonlinear programming," Journal of Global Optimization, Springer, vol. 77(1), pages 75-96, May.
    19. Timo Berthold & Jakob Witzig, 2021. "Conflict Analysis for MINLP," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 421-435, May.
    20. Christoph Neumann & Oliver Stein & Nathan Sudermann-Merx, 2020. "Granularity in Nonlinear Mixed-Integer Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 433-465, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:260:y:2017:i:1:p:283-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.