IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7054-d925250.html
   My bibliography  Save this article

Parametric Performance Analysis of the Cooling Potential of Earth-to-Air Heat Exchangers in Hot and Humid Climates

Author

Listed:
  • Mushk Bughio

    (Department of Architecture, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea
    Department of Architecture, Dawood University of Engineering and Technology, Karachi 74800, Pakistan)

  • Swati Bahale

    (Department of Architecture, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Waqas Ahmed Mahar

    (Department of Architecture, Balochistan University of Information Technology, Engineering & Management Sciences (BUITEMS), Airport Road, Baleli, Quetta 87300, Pakistan
    Sustainable Building Design (SBD) Lab, Department of Urban & Environmental Engineering (UEE), Faculty of Applied Sciences, Université de Liège, 4000 Liège, Belgium)

  • Thorsten Schuetze

    (Department of Architecture, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea)

Abstract

Earth-to-air heat exchangers (EAHEs) are widely used to reduce the indoor temperature and associated cooling energy demand of buildings. This study investigated the potential reduction in indoor temperatures via energy-efficient ventilation through EAHEs in an existing architectural campus building (ACB) with an energy-efficient renovated building envelope in the hot and humid climate of Karachi, Pakistan. The building information modeling (BIM) program Autodesk Revit was used to develop a virtual ACB BIM model. An EnergyPlus parametric analysis of the ACB BIM model in DesignBuilder facilitated quantification of the influences of operating parameters such as pipe installation depth and pipe diameter for EAHEs with similar total pipe lengths and air-exchange rates on the performance of the EAHEs during the cooling season. A 3 m deep and 0.1 m diameter pipe layout in open space significantly reduces indoor temperature via a specific duct layout in an exemplary ACB. The results show that a pipe diameter above 0.1 m is unsuitable because of the reduction in convective heat transfer due to the increase in the pipe’s surface area and the decrease in pressure in the pipe. The findings of this study can be used to improve the indoor thermal comfort of buildings in climates with comparable properties.

Suggested Citation

  • Mushk Bughio & Swati Bahale & Waqas Ahmed Mahar & Thorsten Schuetze, 2022. "Parametric Performance Analysis of the Cooling Potential of Earth-to-Air Heat Exchangers in Hot and Humid Climates," Energies, MDPI, vol. 15(19), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7054-:d:925250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mirzazade Akbarpoor, Ali & Haghighi Poshtiri, Amin & Biglari, Faraz, 2021. "Performance analysis of domed roof integrated with earth-to-air heat exchanger system to meet thermal comfort conditions in buildings," Renewable Energy, Elsevier, vol. 168(C), pages 1265-1293.
    2. Maoz & Saddam Ali & Noor Muhammad & Ahmad Amin & Mohammad Sohaib & Abdul Basit & Tanvir Ahmad, 2019. "Parametric Optimization of Earth to Air Heat Exchanger Using Response Surface Method," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    3. Yu Zhou & Asal Bidarmaghz & Nikolas Makasis & Guillermo Narsilio, 2021. "Ground-Source Heat Pump Systems: The Effects of Variable Trench Separations and Pipe Configurations in Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 14(13), pages 1-15, June.
    4. Chong, Chiew Shan Anthony & Gan, Guohui & Verhoef, Anne & Garcia, Raquel Gonzalez & Vidale, Pier Luigi, 2013. "Simulation of thermal performance of horizontal slinky-loop heat exchangers for ground source heat pumps," Applied Energy, Elsevier, vol. 104(C), pages 603-610.
    5. Misra, Rohit & Bansal, Vikas & Agrawal, Ghanshyam Das & Mathur, Jyotirmay & Aseri, Tarun K., 2013. "CFD analysis based parametric study of derating factor for Earth Air Tunnel Heat Exchanger," Applied Energy, Elsevier, vol. 103(C), pages 266-277.
    6. Waqas Ahmed Mahar & Griet Verbeeck & Sigrid Reiter & Shady Attia, 2020. "Sensitivity Analysis of Passive Design Strategies for Residential Buildings in Cold Semi-Arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    7. Waqas Ahmed Mahar & Griet Verbeeck & Manoj Kumar Singh & Shady Attia, 2019. "An Investigation of Thermal Comfort of Houses in Dry and Semi-Arid Climates of Quetta, Pakistan," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    8. Mushk Bughio & Muhammad Shoaib Khan & Waqas Ahmed Mahar & Thorsten Schuetze, 2021. "Impact of Passive Energy Efficiency Measures on Cooling Energy Demand in an Architectural Campus Building in Karachi, Pakistan," Sustainability, MDPI, vol. 13(13), pages 1-35, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    2. Ahsan Waqar & Idris Othman & Nasir Shafiq & Hasim Altan & Bertug Ozarisoy, 2023. "Modeling the Effect of Overcoming the Barriers to Passive Design Implementation on Project Sustainability Building Success: A Structural Equation Modeling Perspective," Sustainability, MDPI, vol. 15(11), pages 1-26, June.
    3. Mushk Bughio & Muhammad Shoaib Khan & Waqas Ahmed Mahar & Thorsten Schuetze, 2021. "Impact of Passive Energy Efficiency Measures on Cooling Energy Demand in an Architectural Campus Building in Karachi, Pakistan," Sustainability, MDPI, vol. 13(13), pages 1-35, June.
    4. Mushk Bughio & Thorsten Schuetze & Waqas Ahmed Mahar, 2020. "Comparative Analysis of Indoor Environmental Quality of Architectural Campus Buildings’ Lecture Halls and its’ Perception by Building Users, in Karachi, Pakistan," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    5. Mohamed Elhadi Matallah & Waqas Ahmed Mahar & Mushk Bughio & Djamel Alkama & Atef Ahriz & Soumia Bouzaher, 2021. "Prediction of Climate Change Effect on Outdoor Thermal Comfort in Arid Region," Energies, MDPI, vol. 14(16), pages 1-26, August.
    6. Martín Pensado-Mariño & Lara Febrero-Garrido & Pablo Eguía-Oller & Enrique Granada-Álvarez, 2021. "Feasibility of Different Weather Data Sources Applied to Building Indoor Temperature Estimation Using LSTM Neural Networks," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    7. Kwang-Seob Lee & Eun-Chul Kang & Yu-Jin Kim & Euy-Joon Lee, 2019. "Model Verification and Justification Study of Spirally Corrugated Pipes in a Ground-Air Heat Exchanger Application," Energies, MDPI, vol. 12(21), pages 1-13, October.
    8. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    9. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    10. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    11. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    12. Teguh Hady Ariwibowo & Akio Miyara, 2020. "Thermal Characteristics of Slinky-Coil Ground Heat Exchanger with Discrete Double Inclined Ribs," Resources, MDPI, vol. 9(9), pages 1-17, August.
    13. Lee, Seokjae & Park, Sangwoo & Won, Jongmuk & Choi, Hangseok, 2021. "Influential factors on thermal performance of energy slabs equipped with an insulation layer," Renewable Energy, Elsevier, vol. 174(C), pages 823-834.
    14. Abir Khechiba & Djamila Djaghrouri & Moussadek Benabbas & Francesco Leccese & Michele Rocca & Giacomo Salvadori, 2023. "Balancing Thermal Comfort and Energy Consumption in Residential Buildings of Desert Areas: Impact of Passive Strategies," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    15. Ogunleye, Oluwaseun & Singh, Rao Martand & Cecinato, Francesco & Chan Choi, Jung, 2020. "Effect of intermittent operation on the thermal efficiency of energy tunnels under varying tunnel air temperature," Renewable Energy, Elsevier, vol. 146(C), pages 2646-2658.
    16. Elaouzy, Youssef & El Fadar, Abdellah, 2023. "Sustainability of building-integrated bioclimatic design strategies depending on energy affordability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    17. Wu, Wei & You, Tian & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump," Applied Energy, Elsevier, vol. 126(C), pages 113-122.
    18. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. Xia, Tianyang & Li, Yiming & Sun, Zhouping & Wan, Xiuchao & Sun, Dapeng & Wang, Lu & Liu, Xingan & Li, Tianlai, 2023. "Performance study of an active solar water curtain heating system for Chinese solar greenhouse heating in high latitudes regions," Applied Energy, Elsevier, vol. 332(C).
    20. Sofyan, Sarwo Edhy & Hu, Eric & Kotousov, Andrei, 2016. "A new approach to modelling of a horizontal geo-heat exchanger with an internal source term," Applied Energy, Elsevier, vol. 164(C), pages 963-971.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7054-:d:925250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.