IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2787-d231448.html
   My bibliography  Save this article

Comparative Analysis of Perennial and Annual Phaseolus Seed Nutrient Concentrations

Author

Listed:
  • Heather E. Schier

    (Department of Nutrition and Dietetics, Saint Louis University, 3437 Caroline Street, St. Louis, MO 63104, USA)

  • Kathrin A. Eliot

    (Department of Nutrition and Dietetics, Saint Louis University, 3437 Caroline Street, St. Louis, MO 63104, USA)

  • Sterling A. Herron

    (Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA)

  • Lauren K. Landfried

    (Department of Nutrition and Dietetics, Saint Louis University, 3437 Caroline Street, St. Louis, MO 63104, USA)

  • Zoë Migicovsky

    (Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada)

  • Matthew J. Rubin

    (Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA)

  • Allison J. Miller

    (Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA
    Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA)

Abstract

Long-term agricultural sustainability is dependent in part on our capacity to provide productive, nutritious crops that minimize the negative impacts of agriculture on the landscape. Perennial grains within an agroforestry context offers one solution: These plants produce large root systems that reduce soil erosion and simultaneously have the potential to produce nutrients to combat malnutrition. However, nutrient compositions of wild, perennial, herbaceous species, such as those related to the common bean ( Phaseolus vulgaris ) are not well known. In this study, seed ion and amino acid concentrations of perennial and annual Phaseolus species were quantified using ionomics and mass spectrometry. No statistical difference was observed for Zn, toxic ions (e.g., As) or essential amino acid concentrations (except threonine) between perennial and annual Phaseolus species. However, differences were observed for some nutritionally important ions. For example, Ca, Cu, Fe, Mg, Mn, and P concentrations were higher in annual species; further, ion and amino acid concentrations appear to be largely independent of each other. These results suggest variability in ion and amino acid concentrations exist in Phaseolus . As new crop candidates are considered for ecological services, nutritional quality should be optimized to maximize nutrient output of sustainable food crops.

Suggested Citation

  • Heather E. Schier & Kathrin A. Eliot & Sterling A. Herron & Lauren K. Landfried & Zoë Migicovsky & Matthew J. Rubin & Allison J. Miller, 2019. "Comparative Analysis of Perennial and Annual Phaseolus Seed Nutrient Concentrations," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2787-:d:231448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emile A. Frison & Jeremy Cherfas & Toby Hodgkin, 2011. "Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security," Sustainability, MDPI, vol. 3(1), pages 1-16, January.
    2. Timothy E. Crews & Douglas J. Cattani, 2018. "Strategies, Advances, and Challenges in Breeding Perennial Grain Crops," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun-Min Yang & Nosang V. Myung & Han-Seung Lee & Jitendra Kumar Singh, 2020. "L-Arginine-Incorporated Cement Mortar as Sustainable Artificial Reefs," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    2. Hui Liu & Jiwei Liu & Qun Li, 2022. "Asymmetric Effects of Economic Development, Agroforestry Development, Energy Consumption, and Population Size on CO 2 Emissions in China," Sustainability, MDPI, vol. 14(12), pages 1-34, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    2. Lipy Adhikari & Sabarnee Tuladhar & Abid Hussain & Kamal Aryal, 2019. "Are Traditional Food Crops Really ‘Future Smart Foods?’ A Sustainability Perspective," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    3. Silvia Scaramuzzi & Sara Gabellini & Giovanni Belletti & Andrea Marescotti, 2021. "Agrobiodiversity-Oriented Food Systems between Public Policies and Private Action: A Socio-Ecological Model for Sustainable Territorial Development," Sustainability, MDPI, vol. 13(21), pages 1-32, November.
    4. Johannes Kotschi & Bernd Horneburg, 2018. "The Open Source Seed Licence: A novel approach to safeguarding access to plant germplasm," PLOS Biology, Public Library of Science, vol. 16(10), pages 1-7, October.
    5. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    6. Anna-Lisa Noack & Nicky Pouw, 2015. "A blind spot in food and nutrition security: where culture and social change shape the local food plate," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 169-182, June.
    7. Jay Bost, 2013. "Persea schiedeana : A High Oil “Cinderella Species” Fruit with Potential for Tropical Agroforestry Systems," Sustainability, MDPI, vol. 6(1), pages 1-13, December.
    8. Kliem, Lea & Sagebiel, Julian, 2023. "Consumers' preferences for commons-based and open-source produce: A discrete choice experiment with directional information manipulations," Food Policy, Elsevier, vol. 119(C).
    9. Zewen Hei & Huimin Xiang & Jiaen Zhang & Kaiming Liang & Jiawen Zhong & Meijuan Li & Xiaoqiao Ren, 2021. "Intercropping of Rice and Water Mimosa ( Neptunia oleracea Lour.): A Novel Model to Control Pests and Diseases and Improve Yield and Grain Quality while Reducing N Fertilizer Application," Agriculture, MDPI, vol. 12(1), pages 1-17, December.
    10. Andrieu, N. & Blundo-Canto, G. & Cruz-Garcia, G.S., 2019. "Trade-offs between food security and forest exploitation by mestizo households in Ucayali, Peruvian Amazon," Agricultural Systems, Elsevier, vol. 173(C), pages 64-77.
    11. Martin Weih & Alison J. Karley & Adrian C. Newton & Lars P. Kiær & Christoph Scherber & Diego Rubiales & Eveline Adam & James Ajal & Jana Brandmeier & Silvia Pappagallo & Angel Villegas-Fernández & Mo, 2021. "Grain Yield Stability of Cereal-Legume Intercrops Is Greater Than Sole Crops in More Productive Conditions," Agriculture, MDPI, vol. 11(3), pages 1-18, March.
    12. Ramazan Çakmakçı & Mehmet Ali Salık & Songül Çakmakçı, 2023. "Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    13. Stan Selbonne & Loïc Guindé & François Causeret & Pierre Chopin & Jorge Sierra & Régis Tournebize & Jean-Marc Blazy, 2023. "How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    14. Shilai Zhang & Guangfu Huang & Yujiao Zhang & Xiutao Lv & Kejiang Wan & Jian Liang & Yupeng Feng & Jinrong Dao & Shukang Wu & Lin Zhang & Xu Yang & Xiaoping Lian & Liyu Huang & Lin Shao & Jing Zhang &, 2023. "Sustained productivity and agronomic potential of perennial rice," Nature Sustainability, Nature, vol. 6(1), pages 28-38, January.
    15. Maria Gialeli & Andreas Y. Troumbis & Constantinos Giaginis & Sousana K. Papadopoulou & Ioannis Antoniadis & Georgios K. Vasios, 2023. "The Global Growth of ‘Sustainable Diet’ during Recent Decades, a Bibliometric Analysis," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    16. Yunan Lin & Hao Wang & Yanqing Chen & Jiarui Tan & Jingpeng Hong & Shen Yan & Yongsheng Cao & Wei Fang, 2023. "Modelling Distributions of Asian and African Rice Based on MaxEnt," Sustainability, MDPI, vol. 15(3), pages 1-11, February.
    17. Jana Poláková, 2018. "Sustainability—Risk—Resilience: How Does the Case of the Good Agricultural and Environmental Conditions Measure up?," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    18. Joachim Binam & Frank Place & Antoine Kalinganire & Sigue Hamade & Moussa Boureima & Abasse Tougiani & Joseph Dakouo & Bayo Mounkoro & Sanogo Diaminatou & Marcel Badji & Mouhamadou Diop & Andre Babou , 2015. "Effects of farmer managed natural regeneration on livelihoods in semi-arid West Africa," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(4), pages 543-575, October.
    19. Jacques Fils Pierre & Luis Latournerie-Moreno & René Garruña-Hernández & Krista L. Jacobsen & Carrie A. M. Laboski & Lucila de Lourdes Salazar-Barrientos & Esaú Ruiz-Sánchez, 2021. "Farmer Perceptions of Adopting Novel Legumes in Traditional Maize-Based Farming Systems in the Yucatan Peninsula," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    20. Hellen Naigaga & Joseph Ssekandi & Ablaye Ngom & Godfrey Sseremba & Mame Samba Mbaye & Kandioura Noba, 2021. "Ethnobotanical knowledge of home garden plant species and its effect on home garden plant diversity in Thies region of Senegal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7524-7536, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2787-:d:231448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.