IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p841-d136645.html
   My bibliography  Save this article

Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy

Author

Listed:
  • Xiuli Wu

    (Department of Logistics Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Xianli Shen

    (Department of Logistics Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Qi Cui

    (Department of Logistics Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract

Renewable energy is an alternative to non-renewable energy to reduce the carbon footprint of manufacturing systems. Finding out how to make an alternative energy-efficient scheduling solution when renewable and non-renewable energy drives production is of great importance. In this paper, a multi-objective flexible flow shop scheduling problem that considers variable processing time due to renewable energy (MFFSP-VPTRE) is studied. First, the optimization model of the MFFSP-VPTRE is formulated considering the periodicity of renewable energy and the limitations of energy storage capacity. Then, a hybrid non-dominated sorting genetic algorithm with variable local search (HNSGA-II) is proposed to solve the MFFSP-VPTRE. An operation and machine-based encoding method is employed. A low-carbon scheduling algorithm is presented. Besides the crossover and mutation, a variable local search is used to improve the offspring’s Pareto set. The offspring and the parents are combined and those that dominate more are selected to continue evolving. Finally, two groups of experiments are carried out. The results show that the low-carbon scheduling algorithm can effectively reduce the carbon footprint under the premise of makespan optimization and the HNSGA-II outperforms the traditional NSGA-II and can solve the MFFSP-VPTRE effectively and efficiently.

Suggested Citation

  • Xiuli Wu & Xianli Shen & Qi Cui, 2018. "Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy," Sustainability, MDPI, vol. 10(3), pages 1-30, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:841-:d:136645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/841/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shafiullah, G.M., 2016. "Hybrid renewable energy integration (HREI) system for subtropical climate in Central Queensland, Australia," Renewable Energy, Elsevier, vol. 96(PA), pages 1034-1053.
    2. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    3. Xiuli Wu & Shaomin Wu, 2017. "An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1441-1457, August.
    4. Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
    5. Wang, Sheng-yao & Wang, Ling & Liu, Min & Xu, Ye, 2013. "An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 387-396.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongwei Zhang & Lihui Wu & Tao Peng & Shun Jia, 2018. "An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment," Sustainability, MDPI, vol. 11(1), pages 1-21, December.
    2. Leilei Meng & Biao Zhang & Kaizhou Gao & Peng Duan, 2022. "An MILP Model for Energy-Conscious Flexible Job Shop Problem with Transportation and Sequence-Dependent Setup Times," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    3. Nailiang Li & Caihong Feng, 2021. "Research on Machining Workshop Batch Scheduling Incorporating the Completion Time and Non-Processing Energy Consumption Considering Product Structure," Energies, MDPI, vol. 14(19), pages 1-26, September.
    4. Andrzej Bożek, 2020. "Energy Cost-Efficient Task Positioning in Manufacturing Systems," Energies, MDPI, vol. 13(19), pages 1-21, September.
    5. Markus Hilbert & Andreas Dellnitz & Andreas Kleine, 2023. "Production planning under RTP, TOU and PPA considering a redox flow battery storage system," Annals of Operations Research, Springer, vol. 328(2), pages 1409-1436, September.
    6. Luay Elkhidir & Khalid Khan & Mohammad Al-Muhaini & Muhammad Khalid, 2022. "Enhancing Transient Response and Voltage Stability of Renewable Integrated Microgrids," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    7. Adrian Kampa & Iwona Paprocka, 2021. "Analysis of Energy Efficient Scheduling of the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Shutdown Times," Energies, MDPI, vol. 14(21), pages 1-25, November.
    8. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    9. Wenzhu Liao & Tong Wang, 2018. "Promoting Green and Sustainability: A Multi-Objective Optimization Method for the Job-Shop Scheduling Problem," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    10. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    2. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.
    3. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    4. Zhou, Shengchao & Jin, Mingzhou & Du, Ni, 2020. "Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times," Energy, Elsevier, vol. 209(C).
    5. S Afshin Mansouri & Emel Aktas, 2016. "Minimizing energy consumption and makespan in a two-machine flowshop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1382-1394, November.
    6. Zheng, Huan-yu & Wang, Ling, 2015. "Reduction of carbon emissions and project makespan by a Pareto-based estimation of distribution algorithm," International Journal of Production Economics, Elsevier, vol. 164(C), pages 421-432.
    7. Weiwei Cui & Lin Li & Zhiqiang Lu, 2019. "Energy‐efficient scheduling for sustainable manufacturing systems with renewable energy resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 154-173, March.
    8. Alvarez-Meaza, Izaskun & Zarrabeitia-Bilbao, Enara & Rio-Belver, Rosa-María & Garechana-Anacabe, Gaizka, 2021. "Green scheduling to achieve green manufacturing: Pursuing a research agenda by mapping science," Technology in Society, Elsevier, vol. 67(C).
    9. Trevino-Martinez, Samuel & Sawhney, Rapinder & Shylo, Oleg, 2022. "Energy-carbon footprint optimization in sequence-dependent production scheduling," Applied Energy, Elsevier, vol. 315(C).
    10. Tianhua Jiang & Chao Zhang & Huiqi Zhu & Jiuchun Gu & Guanlong Deng, 2018. "Energy-Efficient Scheduling for a Job Shop Using an Improved Whale Optimization Algorithm," Mathematics, MDPI, vol. 6(11), pages 1-16, October.
    11. Lingye Tan & Tiong Lee Kong & Ziyang Zhang & Ahmed Sayed M. Metwally & Shubham Sharma & Kanta Prasad Sharma & Sayed M. Eldin & Dominik Zimon, 2023. "Scheduling and Controlling Production in an Internet of Things Environment for Industry 4.0: An Analysis and Systematic Review of Scientific Metrological Data," Sustainability, MDPI, vol. 15(9), pages 1-37, May.
    12. Deming Lei & Youlian Zheng & Xiuping Guo, 2017. "A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3126-3140, June.
    13. Masmoudi, Oussama & Delorme, Xavier & Gianessi, Paolo, 2019. "Job-shop scheduling problem with energy consideration," International Journal of Production Economics, Elsevier, vol. 216(C), pages 12-22.
    14. Matthias Gerhard Wichmann & Christoph Johannes & Thomas Stefan Spengler, 2019. "An extension of the general lot-sizing and scheduling problem (GLSP) with time-dependent energy prices," Journal of Business Economics, Springer, vol. 89(5), pages 481-514, July.
    15. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    16. Li, Weidong & Ou, Jinwen, 2024. "Approximation algorithms for scheduling parallel machines with an energy constraint in green manufacturing," European Journal of Operational Research, Elsevier, vol. 314(3), pages 882-893.
    17. Beck, Fabian G. & Biel, Konstantin & Glock, Christoph H., 2019. "Integration of energy aspects into the economic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 399-410.
    18. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    19. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    20. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:841-:d:136645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.