IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2839-d340725.html
   My bibliography  Save this article

Slope Stability Analysis of Unsaturated Soil Slopes Based on the Site-Specific Characteristics: A Case Study of Hwangryeong Mountain, Busan, Korea

Author

Listed:
  • Sinhang Kang

    (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea)

  • Seung-Rae Lee

    (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea)

  • Sung-Eun Cho

    (Department of Civil, Safety, and Environmental Engineering, Hankyong National University, Gyeonggi 17579, Korea)

Abstract

Shallow slope failures occur almost every year during the rainy season. Continuous observation of the meteorological parameters and hydrological characteristics is required to more clearly understand the triggering mechanisms of shallow slope failure. In addition, influential factors, such as type of relative permeability models, air flow, and variation of hydraulic conductivity associated with stress–strain behavior of soil, have significant effects on the actual mechanism of rainfall infiltration. Real-time data including hourly rainfall and pore water pressure in response to rainfall was recorded by devices; then, the change in pore pressure from the devices was compared to the results from the infiltration analysis with applications of three relative permeability models, air flow, and the coupled hydro-mechanical analysis to examine an appropriate site-specific approach to a rainfall infiltration analysis. The infiltration and stability analyses based on the site-specific hydrologic characteristics were utilized to create maps of safety factors that depend on the cumulative rainfall. In regions vulnerable to landslides, rainfall forecast information and safety factor maps built by applying various rainfall scenarios can be useful in preparing countermeasures against disasters during the rainy season.

Suggested Citation

  • Sinhang Kang & Seung-Rae Lee & Sung-Eun Cho, 2020. "Slope Stability Analysis of Unsaturated Soil Slopes Based on the Site-Specific Characteristics: A Case Study of Hwangryeong Mountain, Busan, Korea," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2839-:d:340725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangseom Jeong & Kwangwoo Lee & Junghwan Kim & Yongmin Kim, 2017. "Analysis of Rainfall-Induced Landslide on Unsaturated Soil Slopes," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joram Wachira Mburu & An-Jui Li & Horn-Da Lin & Chih-Wei Lu, 2022. "Investigations of Unsaturated Slopes Subjected to Rainfall Infiltration Using Numerical Approaches—A Parametric Study and Comparative Review," Sustainability, MDPI, vol. 14(21), pages 1-37, November.
    2. Shaoling Li & Chi Qiu & Jiankun Huang & Xiaoping Guo & Yucun Hu & Al-Shami Qahtan Mugahed & Jin Tan, 2022. "Stability Analysis of a High-Steep Dump Slope under Different Rainfall Conditions," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    3. Jing Luo & Xiangjun Pei & Ronghao Jiang & Tiantao Li & Hao Sun & Bo Jin & Qian Li, 2023. "The Characteristics and Seepage Stability Analysis of Toppling-Sliding Failure under Rainfall," Sustainability, MDPI, vol. 15(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Schilirò & Gian Marco Marmoni & Matteo Fiorucci & Massimo Pecci & Gabriele Scarascia Mugnozza, 2023. "Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1401-1426, September.
    2. Joram Wachira Mburu & An-Jui Li & Horn-Da Lin & Chih-Wei Lu, 2022. "Investigations of Unsaturated Slopes Subjected to Rainfall Infiltration Using Numerical Approaches—A Parametric Study and Comparative Review," Sustainability, MDPI, vol. 14(21), pages 1-37, November.
    3. Sangseom Jeong & Azman Kassim & Moonhyun Hong & Nader Saadatkhah, 2018. "Susceptibility Assessments of Landslides in Hulu Kelang Area Using a Geographic Information System-Based Prediction Model," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    4. Xiangjian Rui & Lei Nie & Yan Xu & Hong Wang, 2019. "Land Degeneration due to Water Infiltration and Sub-Erosion: A Case Study of Soil Slope Failure at the National Geological Park of Qian-an Mud Forest, China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    5. Waleed Abdelmoghny Metwaly Ogila, 2021. "Analysis and assessment of slope instability along international mountainous road in North Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2479-2517, April.
    6. Zhilu Chang & Huanxiang Gao & Faming Huang & Jiawu Chen & Jinsong Huang & Zizheng Guo, 2020. "Study on the creep behaviours and the improved Burgers model of a loess landslide considering matric suction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1479-1497, August.
    7. Kyungjin An & Suyeon Kim & Taebyeong Chae & Daeryong Park, 2018. "Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources," Sustainability, MDPI, vol. 10(2), pages 1-13, January.
    8. Martin Kuradusenge & Santhi Kumaran & Marco Zennaro, 2020. "Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda," IJERPH, MDPI, vol. 17(11), pages 1-20, June.
    9. Ming-Chien Chung & Chien-Hsin Chen & Ching-Fang Lee & Wei-Kai Huang & Chih-Hao Tan, 2018. "Failure Impact Assessment for Large-Scale Landslides Located Near Human Settlement: Case Study in Southern Taiwan," Sustainability, MDPI, vol. 10(5), pages 1-25, May.
    10. Ratan Das & Parag Phukon & T. N. Singh, 2022. "Understanding the cause and effect relationship of debris slides in Papum Pare district, Arunachal Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1735-1760, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2839-:d:340725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.