IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2431-d157524.html
   My bibliography  Save this article

Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates

Author

Listed:
  • Margareth Viecco

    (Department of Construction Engineering and Management, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
    Faculty of Civil Engineering, Universidad Pontificia Bolivariana, Bucaramanga 681007, Colombia
    Center for Sustainable Urban Development, Pontificia Universidad Católica de Chile, Santiago 7520245, Chile)

  • Sergio Vera

    (Department of Construction Engineering and Management, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
    Center for Sustainable Urban Development, Pontificia Universidad Católica de Chile, Santiago 7520245, Chile)

  • Héctor Jorquera

    (Center for Sustainable Urban Development, Pontificia Universidad Católica de Chile, Santiago 7520245, Chile
    Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile)

  • Waldo Bustamante

    (Center for Sustainable Urban Development, Pontificia Universidad Católica de Chile, Santiago 7520245, Chile
    School of Architecture, Pontificia Universidad Católica de Chile, Santiago 7520245, Chile)

  • Jorge Gironás

    (Center for Sustainable Urban Development, Pontificia Universidad Católica de Chile, Santiago 7520245, Chile
    Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católicade Chile, Santiago 7820436, Chile)

  • Cynnamon Dobbs

    (School of Geography, Universidad de Chile, Santiago 8331051, Chile)

  • Eduardo Leiva

    (Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católicade Chile, Santiago 7820436, Chile
    Department of Inorganic Chemistry, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile)

Abstract

In the last two decades, the incorporation of green roofs and living walls in buildings has increased significantly worldwide because of their benefits such as building energy savings, promoting biodiversity, controlling water run-off, mitigating urban heat island effect, improving indoor and urban air quality, and connecting people with nature. However, few studies have quantified the impact of green roofs (GRs) and living walls (LWs) on mitigating air pollution, especially in semiarid climates where airborne particle matter (PM) levels are high. Therefore, the aim of this paper is quantifying the dry deposition of PM 10 and PM 2.5 by several vegetation species commonly used in GRs and LWs in semiarid climates. Five species ( Pitosporum tobira , Lavandula angustifolia , Lampranthus spectabillis , Sedum album , and Sedum reflexum ) for GRs and four species ( Aptenia cordiflora , Erigeron karvinskianus , Sedum palmeri , and Sedum spurium p. ) for LWs were tested in an experimental facility—through washing, filtering, and weighing—to quantify the dry deposition of PM 2.5 and PM 10 on vegetation leaves as well as PM captured by the leaf wax. The main result is that a significant amount of PM is deposited on the typical vegetation used in GRs and LWs in semiarid climates. However, large differences in PM dry deposition were found among species, ranging from 0.09 μg/cm 2 ∙h −1 to 1.32 μg/cm 2 ∙h −1 for PM 2.5 , 0.48 μg/cm 2 ∙h −1 to 4.7 μg/cm 2 ∙h −1 for PM 10 and 0.41 μg/cm 2 ∙h −1 to 25.6 μg/cm 2 ∙h −1 for leaf wax. The species that showed the highest potential to capture PM were S. album , S. reflexum , S. palmeri , and L. spectabillis . This study shows this green infrastructures can contribute to mitigate air pollution, thus GRs and LWs have the potential for being included in decontamination plans.

Suggested Citation

  • Margareth Viecco & Sergio Vera & Héctor Jorquera & Waldo Bustamante & Jorge Gironás & Cynnamon Dobbs & Eduardo Leiva, 2018. "Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2431-:d:157524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin K. Widomski & Anna Musz-Pomorska & Justyna Gołębiowska, 2023. "Hydrologic Effectiveness and Economic Efficiency of Green Architecture in Selected Urbanized Catchment," Land, MDPI, vol. 12(7), pages 1-19, June.
    2. Mina Radić & Marta Brković Dodig & Thomas Auer, 2019. "Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    3. Isidro A. Pérez & Mª Ángeles García & Mª Luisa Sánchez & Nuria Pardo & Beatriz Fernández-Duque, 2020. "Key Points in Air Pollution Meteorology," IJERPH, MDPI, vol. 17(22), pages 1-14, November.
    4. Robert Popek & Beata Fornal-Pieniak & Piotr Dąbrowski & Filip Chyliński, 2023. "The Role of Spontaneous Flora in the Mitigation of Particulate Matter from Traffic Roads in an Urbanised Area," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    5. Aya Elkamhawy & Choon-Man Jang, 2020. "Performance Evaluation of Hybrid Air Purification System with Vegetation Soil and Electrostatic Precipitator Filters," Sustainability, MDPI, vol. 12(13), pages 1-16, July.
    6. Joanna Badach & Małgorzata Dymnicka & Andrzej Baranowski, 2020. "Urban Vegetation in Air Quality Management: A Review and Policy Framework," Sustainability, MDPI, vol. 12(3), pages 1-28, February.
    7. Bo Wang & Xiaochen Zhang & Chenming Gu & Mei Zhang & Yuanhao Zhao & Jia Jia, 2021. "Magnetism and Grain-Size Distribution of Particles Deposited on the Surface of Urban Trees in Lanzhou City, Northwestern China," IJERPH, MDPI, vol. 18(22), pages 1-14, November.
    8. Gül Aslı Aksu & Şermin Tağıl & Nebiye Musaoğlu & Emel Seyrek Canatanoğlu & Adnan Uzun, 2022. "Landscape Ecological Evaluation of Cultural Patterns for the Istanbul Urban Landscape," Sustainability, MDPI, vol. 14(23), pages 1-26, November.
    9. Eunha Shin & Heungsoon Kim, 2019. "Benefit–Cost Analysis of Green Roof Initiative Projects: The Case of Jung-gu, Seoul," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    10. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).
    11. Sungwan Son & Aya Elkamhawy & Choon-Man Jang, 2022. "Active Soil Filter System for Indoor Air Purification in School Classrooms," IJERPH, MDPI, vol. 19(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renata Giedych & Gabriela Maksymiuk & Agata Cieszewska, 2024. "Eco-Spatial Indices as an Effective Tool for Climate Change Adaptation in Residential Neighbourhoods—Comparative Study," Land, MDPI, vol. 13(9), pages 1-18, September.
    2. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    3. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    5. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    6. Stefano Cascone, 2024. "Eco-Innovative Construction: Integrating Green Roofs Design within the BIM Framework," Sustainability, MDPI, vol. 16(5), pages 1-19, February.
    7. Seyed Mohammad Hossein Zakeri & Amir Mahdiyar, 2020. "The Hindrances to Green Roof Adoption in a Semi-Arid Climate Condition," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    8. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    9. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    10. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    11. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    12. Andrea D’Aniello & Luigi Cimorelli & Luca Cozzolino & Domenico Pianese, 2019. "The Effect of Geological Heterogeneity and Groundwater Table Depth on the Hydraulic Performance of Stormwater Infiltration Facilities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1147-1166, February.
    13. Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    14. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    15. Carlo Alberto Campiotti & Carlo Bibbiani & Alberto Campiotti & Evelia Schettini & Corinna Viola & Giuliano Vox, 2016. "Innovative sustainable strategies in agro-food systems and in buildings for energy efficiency," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2016(2), pages 79-96.
    16. Tolessa Deksissa & Harris Trobman & Kamran Zendehdel & Hossain Azam, 2021. "Integrating Urban Agriculture and Stormwater Management in a Circular Economy to Enhance Ecosystem Services: Connecting the Dots," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    17. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Wang, Zhi-Hua & Zhao, Xiaoxi & Yang, Jiachuan & Song, Jiyun, 2016. "Cooling and energy saving potentials of shade trees and urban lawns in a desert city," Applied Energy, Elsevier, vol. 161(C), pages 437-444.
    19. Yasser Jezzini & Ghiwa Assaf & Rayan H. Assaad, 2023. "Models and Methods for Quantifying the Environmental, Economic, and Social Benefits and Challenges of Green Infrastructure: A Critical Review," Sustainability, MDPI, vol. 15(9), pages 1-40, May.
    20. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2431-:d:157524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.