IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10733-d1538518.html
   My bibliography  Save this article

Assessing Particulate Matter Deposition and Resuspension by Living Wall Systems in a Wind Tunnel Setup

Author

Listed:
  • Tess Ysebaert

    (Research Group DuEL, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium)

  • Kyra Koch

    (Research Group ENdEMIC, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium)

  • Roeland Samson

    (Research Group ENdEMIC, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium)

  • Siegfried Denys

    (Research Group DuEL, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium)

Abstract

This study examines the particulate matter (PM) capture capacity of living wall systems (LWSs), focusing on leaf traits that facilitate PM deposition. Six LWS designs, differing in structure and substrate, were tested under constant airflow conditions with and without additional PM. Results showed that planter-based LWSs reduced PM 0.1 by 2% and PM 2.5 by 4%, while a textile LWS reduced PM 0.1 by 23% and PM 2.5 by 5%, though geotextile textile increased PM by 11% for both fractions. A moss substrate LWS worsened air quality, raising PM 0.1 by 2% and PM 2.5 by 5%. Magnetic analysis of leaf-deposited PM (SIRM) revealed species-specific differences ( p < 0.001), with SIRM values ranging from 5 ± 1 µA to 260 ± 1 µA and higher PM accumulation in plants with lower specific leaf areas. No differences were observed in SIRM between deposition and resuspension phases, indicating the PM source lacked sufficient magnetisable particles. The findings highlight the potential of LWSs in urban environments for air quality improvement but underscore the importance of selecting suitable LWS structures and plant species.

Suggested Citation

  • Tess Ysebaert & Kyra Koch & Roeland Samson & Siegfried Denys, 2024. "Assessing Particulate Matter Deposition and Resuspension by Living Wall Systems in a Wind Tunnel Setup," Sustainability, MDPI, vol. 16(23), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10733-:d:1538518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manso, Maria & Castro-Gomes, João, 2015. "Green wall systems: A review of their characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 863-871.
    2. Margareth Viecco & Sergio Vera & Héctor Jorquera & Waldo Bustamante & Jorge Gironás & Cynnamon Dobbs & Eduardo Leiva, 2018. "Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mina Radić & Marta Brković Dodig & Thomas Auer, 2019. "Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    2. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Marcin K. Widomski & Anna Musz-Pomorska & Justyna Gołębiowska, 2023. "Hydrologic Effectiveness and Economic Efficiency of Green Architecture in Selected Urbanized Catchment," Land, MDPI, vol. 12(7), pages 1-19, June.
    4. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Pei-Wen Chung & Stephen J. Livesley & John P. Rayner & Claire Farrell, 2021. "Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants," Land, MDPI, vol. 10(12), pages 1-13, November.
    6. Gül Aslı Aksu & Şermin Tağıl & Nebiye Musaoğlu & Emel Seyrek Canatanoğlu & Adnan Uzun, 2022. "Landscape Ecological Evaluation of Cultural Patterns for the Istanbul Urban Landscape," Sustainability, MDPI, vol. 14(23), pages 1-26, November.
    7. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    8. Sungwan Son & Aya Elkamhawy & Choon-Man Jang, 2022. "Active Soil Filter System for Indoor Air Purification in School Classrooms," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    9. Michal Kraus & Kateřina Žáková & Jaroslav Žák, 2020. "Biochar for Vertical Greenery Systems," Energies, MDPI, vol. 13(23), pages 1-13, November.
    10. Yasser Jezzini & Ghiwa Assaf & Rayan H. Assaad, 2023. "Models and Methods for Quantifying the Environmental, Economic, and Social Benefits and Challenges of Green Infrastructure: A Critical Review," Sustainability, MDPI, vol. 15(9), pages 1-40, May.
    11. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    12. Christine Bertram & Jan Goebel & Christian Krekel & Katrin Rehdanz, 2022. "Urban Land Use Fragmentation and Human Well-Being," Land Economics, University of Wisconsin Press, vol. 98(2), pages 399-420.
    13. Katia Perini & Fabio Magrassi & Andrea Giachetta & Luca Moreschi & Michela Gallo & Adriana Del Borghi, 2021. "Environmental Sustainability of Building Retrofit through Vertical Greening Systems: A Life-Cycle Approach," Sustainability, MDPI, vol. 13(9), pages 1-13, April.
    14. Pérez, Gabriel & Coma, Julià & Sol, Salvador & Cabeza, Luisa F., 2017. "Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect," Applied Energy, Elsevier, vol. 187(C), pages 424-437.
    15. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).
    16. Fabrizio Ascione & Rosa Francesca De Masi & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2020. "Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches," Energies, MDPI, vol. 13(9), pages 1-39, May.
    17. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Peter Juras & Pavol Durica, 2022. "Measurement of the Green Façade Prototype in a Climate Chamber: Impact of Watering Regime on the Surface Temperatures," Energies, MDPI, vol. 15(7), pages 1-14, March.
    19. Isidro A. Pérez & Mª Ángeles García & Mª Luisa Sánchez & Nuria Pardo & Beatriz Fernández-Duque, 2020. "Key Points in Air Pollution Meteorology," IJERPH, MDPI, vol. 17(22), pages 1-14, November.
    20. Margarita-Niki Assimakopoulos & Rosa Francesca De Masi & Filippo de Rossi & Dimitra Papadaki & Silvia Ruggiero, 2020. "Green Wall Design Approach Towards Energy Performance and Indoor Comfort Improvement: A Case Study in Athens," Sustainability, MDPI, vol. 12(9), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10733-:d:1538518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.