IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p1130-d140300.html
   My bibliography  Save this article

Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile

Author

Listed:
  • Daniel Mora-Melià

    (Departamento de Ingeniería y Gestión de la Construcción, Facultad de Ingeniería, Universidad de Talca, Talca 3340000, Chile)

  • Carlos S. López-Aburto

    (Departamento de Ingeniería y Gestión de la Construcción, Facultad de Ingeniería, Universidad de Talca, Talca 3340000, Chile)

  • Pablo Ballesteros-Pérez

    (School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • Pedro Muñoz-Velasco

    (Grupo de Investigación SCOEM, Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, Logroño 26002, Spain)

Abstract

Population increase and urban development over the last 20 years in Chile have outgrown most rainwater drainage and evacuation systems. Many cities located in the central region suffer from frequent floods in some of their sectors during winter rainfall events. In addition, the lack of green spaces in these cities leads to biodiversity loss, increasing temperatures, greater energy demands, etc. Green roofs offer a solution that can mitigate climate change by reducing the runoff in cities with extensive, highly impermeable areas. This work analyses the installation of green roofs as a potential solution to the sectorial floods suffered by many cities in central Chile. The methodology includes the identification of conflictive sectors in the city of Curicó, hydrological modelling with the Storm Water Management Model (SWMM) software, the consideration of different distributions and types of green roof surfaces, and computational simulations to determine the feasibility of green roofs for preventing floods. The results show that, for moderate rainfall events, all studied sectors could avoid flooding if at least 50% of the surrounding area had green roofs (irrespective of the type of green roof). In contrast, in the presence of strong rainfall events, only some semi-extensive and extensive green roofs covering 60% to 95% of the surrounding area, respectively, could prevent flooding.

Suggested Citation

  • Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1130-:d:140300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/1130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/1130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    2. Hwang-Hee Kim & Chun-Su Kim & Ji-Hong Jeon & Seung-Kee Lee & Chan-Gi Park, 2017. "Performance Evaluation and Field Application of Red Clay Green Roof Vegetation Blocks for Ecological Restoration Projects," Sustainability, MDPI, vol. 9(3), pages 1-16, February.
    3. Teresa Santos & José António Tenedório & José Alberto Gonçalves, 2016. "Quantifying the City’s Green Area Potential Gain Using Remote Sensing Data," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    4. Jaffal, Issa & Ouldboukhitine, Salah-Eddine & Belarbi, Rafik, 2012. "A comprehensive study of the impact of green roofs on building energy performance," Renewable Energy, Elsevier, vol. 43(C), pages 157-164.
    5. Octavio Rojas & María Mardones & Carolina Rojas & Carolina Martínez & Luis Flores, 2017. "Urban Growth and Flood Disasters in the Coastal River Basin of South-Central Chile (1943–2011)," Sustainability, MDPI, vol. 9(2), pages 1-21, January.
    6. Ho Huu Loc & Pham Minh Duyen & Thomas J. Ballatore & Nguyen Hoang My Lan & Ashim Gupta, 2017. "Applicability of sustainable urban drainage systems: an evaluation by multi-criteria analysis," Environment Systems and Decisions, Springer, vol. 37(3), pages 332-343, September.
    7. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    8. Dario Ambrosini & Giorgio Galli & Biagio Mancini & Iole Nardi & Stefano Sfarra, 2014. "Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met ® Climate Model," Sustainability, MDPI, vol. 6(10), pages 1-17, October.
    9. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    10. Carsten Dierkes & Terry Lucke & Brigitte Helmreich, 2015. "General Technical Approvals for Decentralised Sustainable Urban Drainage Systems (SUDS)—The Current Situation in Germany," Sustainability, MDPI, vol. 7(3), pages 1-21, March.
    11. Nicole Tassicker & Payam Rahnamayiezekavat & Monty Sutrisna, 2016. "An Insight into the Commercial Viability of Green Roofs in Australia," Sustainability, MDPI, vol. 8(7), pages 1-25, June.
    12. Heng Luo & Ning Wang & Jianping Chen & Xiaoyan Ye & Yun-Fei Sun, 2015. "Study on the Thermal Effects and Air Quality Improvement of Green Roof," Sustainability, MDPI, vol. 7(3), pages 1-14, March.
    13. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Lucía Jiménez Ariza & José Alejandro Martínez & Andrés Felipe Muñoz & Juan Pablo Quijano & Juan Pablo Rodríguez & Luis Alejandro Camacho & Mario Díaz-Granados, 2019. "A Multicriteria Planning Framework to Locate and Select Sustainable Urban Drainage Systems (SUDS) in Consolidated Urban Areas," Sustainability, MDPI, vol. 11(8), pages 1-33, April.
    2. Mitali Yeshwant Joshi & Jacques Teller, 2021. "Urban Integration of Green Roofs: Current Challenges and Perspectives," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    3. Dongwei Qiu & Hao Xu & Dean Luo & Qing Ye & Shaofu Li & Tong Wang & Keliang Ding, 2020. "A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-23, January.
    4. Yuanyuan Yang & Wenhui Zhang & Zhe Liu & Dengfeng Liu & Qiang Huang & Jun Xia, 2023. "Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City," Sustainability, MDPI, vol. 15(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    2. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    3. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    4. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    5. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    6. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    7. Carlo Alberto Campiotti & Carlo Bibbiani & Alberto Campiotti & Evelia Schettini & Corinna Viola & Giuliano Vox, 2016. "Innovative sustainable strategies in agro-food systems and in buildings for energy efficiency," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2016(2), pages 79-96.
    8. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    9. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Fabiana Frota de Albuquerque Landi & Claudia Fabiani & Anna Laura Pisello, 2021. "Experimental Winter Monitoring of a Light-Weight Green Roof Assembly for Building Retrofit," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    11. Maria Luíza Santos & Cristina Matos Silva & Filipa Ferreira & José Saldanha Matos, 2023. "Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    12. Liberalesso, Tiago & Oliveira Cruz, Carlos & Matos Silva, Cristina & Manso, Maria, 2020. "Green infrastructure and public policies: An international review of green roofs and green walls incentives," Land Use Policy, Elsevier, vol. 96(C).
    13. Mithun Hanumesh & Rémy Claverie & Geoffroy Séré, 2021. "A Roof of Greenery, but a Sky of Unexplored Relations—Meta-Analysis of Factors and Properties That Affect Green Roof Hydrological and Thermal Performances," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    14. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    15. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    16. Dimitris Perivoliotis & Iasonas Arvanitis & Anna Tzavali & Vassilios Papakostas & Sophia Kappou & George Andreakos & Angeliki Fotiadi & John A. Paravantis & Manolis Souliotis & Giouli Mihalakakou, 2023. "Sustainable Urban Environment through Green Roofs: A Literature Review with Case Studies," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    17. Yang, An-Shik & Juan, Yu-Hsuan & Wen, Chih-Yung & Chang, Chao-Jui, 2017. "Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park," Applied Energy, Elsevier, vol. 192(C), pages 178-200.
    18. Teresa Santos & José António Tenedório & José Alberto Gonçalves, 2016. "Quantifying the City’s Green Area Potential Gain Using Remote Sensing Data," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    19. Stella Tsoka & Katerina Tsikaloudaki & Theodoros Theodosiou & Dimitrios Bikas, 2020. "Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies—A Review," Energies, MDPI, vol. 13(6), pages 1-25, March.
    20. Gaochuan Zhang & Bao-Jie He & Zongzhou Zhu & Bart Julien Dewancker, 2019. "Impact of Morphological Characteristics of Green Roofs on Pedestrian Cooling in Subtropical Climates," IJERPH, MDPI, vol. 16(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1130-:d:140300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.