IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i22p11964-d678973.html
   My bibliography  Save this article

Magnetism and Grain-Size Distribution of Particles Deposited on the Surface of Urban Trees in Lanzhou City, Northwestern China

Author

Listed:
  • Bo Wang

    (College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Xiaochen Zhang

    (College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Chenming Gu

    (College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Mei Zhang

    (College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Yuanhao Zhao

    (College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Jia Jia

    (College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China)

Abstract

Studies on the variation in the particulate matter (PM) content, Saturation Isothermal Remanent Magnetization (SIRM), and particle grain-size distribution at a high spatial resolution are helpful in evaluating the important role of urban forests in PM removal. In this study, the trees located in dense urban forests (T0) retained more PM than trees located in open spaces (T1–T4); the SIRM and PM weight of T0 were 1.54–2.53 and 1.04–1.47 times more than those of T1–T4, respectively. In addition, the SIRM and PM weight decreased with increasing distance to the road, suggesting that distance from pollution sources plays a key role in reducing the air concentration of PM. The different grain-size components were determined from frequency curve plots using a laser particle-size analyzer. A unimodal spectrum with a major peak of approximately 20 μm and a minor peak between 0.1 and 1 μm was observed, indicating that a large proportion of fine air PM was retained by the needles of the study trees. Additionally, more <2.5 μm size fraction particles were observed at the sampling site near the traffic source but, compared to a tree in a row of trees, the percentage of the >10 μm size fraction for the tree in the dense urban forest was higher, indicating that the particles deposited on the needle surface originating from traffic sources were finer than those from natural atmospheric dust. The exploration of the variation in the PM weight, SIRM, and grain size of the particles deposited on the needle surface facilitates monitoring the removal of PM by urban forests under different environmental conditions (e.g., in closed dense urban forests and in open roadside spaces), different distances to roads, and different sampling heights above the ground.

Suggested Citation

  • Bo Wang & Xiaochen Zhang & Chenming Gu & Mei Zhang & Yuanhao Zhao & Jia Jia, 2021. "Magnetism and Grain-Size Distribution of Particles Deposited on the Surface of Urban Trees in Lanzhou City, Northwestern China," IJERPH, MDPI, vol. 18(22), pages 1-14, November.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:22:p:11964-:d:678973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/22/11964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/22/11964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Wang & Xiaochen Zhang & Yuanhao Zhao & Mei Zhang & Jia Jia, 2021. "Spatial and Temporal Distribution of Pollution Based on Magnetic Analysis of Soil and Atmospheric Dustfall in Baiyin City, Northwestern China," IJERPH, MDPI, vol. 18(4), pages 1-15, February.
    2. Margareth Viecco & Sergio Vera & Héctor Jorquera & Waldo Bustamante & Jorge Gironás & Cynnamon Dobbs & Eduardo Leiva, 2018. "Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin K. Widomski & Anna Musz-Pomorska & Justyna Gołębiowska, 2023. "Hydrologic Effectiveness and Economic Efficiency of Green Architecture in Selected Urbanized Catchment," Land, MDPI, vol. 12(7), pages 1-19, June.
    2. Gül Aslı Aksu & Şermin Tağıl & Nebiye Musaoğlu & Emel Seyrek Canatanoğlu & Adnan Uzun, 2022. "Landscape Ecological Evaluation of Cultural Patterns for the Istanbul Urban Landscape," Sustainability, MDPI, vol. 14(23), pages 1-26, November.
    3. Sungwan Son & Aya Elkamhawy & Choon-Man Jang, 2022. "Active Soil Filter System for Indoor Air Purification in School Classrooms," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    4. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).
    5. Isidro A. Pérez & Mª Ángeles García & Mª Luisa Sánchez & Nuria Pardo & Beatriz Fernández-Duque, 2020. "Key Points in Air Pollution Meteorology," IJERPH, MDPI, vol. 17(22), pages 1-14, November.
    6. Joanna Badach & Małgorzata Dymnicka & Andrzej Baranowski, 2020. "Urban Vegetation in Air Quality Management: A Review and Policy Framework," Sustainability, MDPI, vol. 12(3), pages 1-28, February.
    7. Mina Radić & Marta Brković Dodig & Thomas Auer, 2019. "Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    8. Eunha Shin & Heungsoon Kim, 2019. "Benefit–Cost Analysis of Green Roof Initiative Projects: The Case of Jung-gu, Seoul," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    9. Robert Popek & Beata Fornal-Pieniak & Piotr Dąbrowski & Filip Chyliński, 2023. "The Role of Spontaneous Flora in the Mitigation of Particulate Matter from Traffic Roads in an Urbanised Area," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    10. Aya Elkamhawy & Choon-Man Jang, 2020. "Performance Evaluation of Hybrid Air Purification System with Vegetation Soil and Electrostatic Precipitator Filters," Sustainability, MDPI, vol. 12(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:22:p:11964-:d:678973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.