IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7568-d1139748.html
   My bibliography  Save this article

The Role of Spontaneous Flora in the Mitigation of Particulate Matter from Traffic Roads in an Urbanised Area

Author

Listed:
  • Robert Popek

    (Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland)

  • Beata Fornal-Pieniak

    (Department of Environmental Protection and Dendrology, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland)

  • Piotr Dąbrowski

    (Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland)

  • Filip Chyliński

    (Instytut Techniki Budowlanej, Filtrowa Street 1, 00-611 Warsaw, Poland)

Abstract

Particulate matter (PM) is a serious air pollutant that poses significant health risks. One solution to reduce PM concentrations in these areas is through phytoremediation, a process that involves using plants to remove contaminants from the environment. In this study, we investigated the capacity of spontaneous flora—herbaceous plants, shrubs, and trees growing in five zones from the road—to absorb PM on their foliage. The study found significant differences in the accumulation of PM, with the highest PM accumulation recorded in Zone V, which boasted a blend of the three mentioned vegetation types together. In contrast, Zones I and II, which were located close to the road and comprised solely herbaceous plants, exhibited 14.3% and 43.4% less PM accumulation, respectively. Similarly, Zone IV, with a mix of herbaceous plants and shrubs, showed 64.5% less PM accumulation, while Zone III, with only herbaceous plants, had a staggering PM accumulation reduction of 76.8%. The sum of Si+Al+Ca displayed a similar pattern. Furthermore, the findings highlighted the valuable role of plants in decreasing PM concentrations in the air, resulting in reductions of 76%, 39%, and 47% for PM 10 , PM 2.5 , and PM 1.0 , respectively. The results indicate that various spontaneous flora can work in unison to reduce PM, providing a multifaceted approach to combating air pollution.

Suggested Citation

  • Robert Popek & Beata Fornal-Pieniak & Piotr Dąbrowski & Filip Chyliński, 2023. "The Role of Spontaneous Flora in the Mitigation of Particulate Matter from Traffic Roads in an Urbanised Area," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7568-:d:1139748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dagmara Stangierska & Beata Fornal-Pieniak & Paweł Szumigała & Katarzyna Widera & Barbara Żarska & Karolina Szumigała, 2023. "Green Physical Activity Indicator: Health, Physical Activity and Spending Time Outdoors Related to Residents Preference for Greenery," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    2. Yanmei Li & Shaojun Wang & Qibo Chen, 2019. "Potential of Thirteen Urban Greening Plants to Capture Particulate Matter on Leaf Surfaces across Three Levels of Ambient Atmospheric Pollution," IJERPH, MDPI, vol. 16(3), pages 1-12, January.
    3. Margareth Viecco & Sergio Vera & Héctor Jorquera & Waldo Bustamante & Jorge Gironás & Cynnamon Dobbs & Eduardo Leiva, 2018. "Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    4. Teodoro Semeraro & Aurelia Scarano & Riccardo Buccolieri & Angelo Santino & Eeva Aarrevaara, 2021. "Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits," Land, MDPI, vol. 10(2), pages 1-26, January.
    5. Muhammad Azher Hassan & Tariq Mehmood & Ehtisham Lodhi & Muhammad Bilal & Afzal Ahmed Dar & Junjie Liu, 2022. "Lockdown Amid COVID-19 Ascendancy over Ambient Particulate Matter Pollution Anomaly," IJERPH, MDPI, vol. 19(20), pages 1-31, October.
    6. Robert Popek & Beata Fornal-Pieniak & Filip Chyliński & Magdalena Pawełkowicz & Jan Bobrowicz & Dominika Chrzanowska & Natalia Piechota & Arkadiusz Przybysz, 2022. "Not Only Trees Matter—Traffic-Related PM Accumulation by Vegetation of Urban Forests," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Judith Schröder & Susanne Moebus & Julita Skodra, 2022. "Selected Research Issues of Urban Public Health," IJERPH, MDPI, vol. 19(9), pages 1-28, May.
    2. Ivana Bassi & Vanessa Deotto & Laura Pagani & Luca Iseppi, 2024. "Forest Therapy as an Alternative and Sustainable Rehabilitation Practice: A Patient Group Attitude Investigation," Sustainability, MDPI, vol. 16(18), pages 1-14, September.
    3. Marcin K. Widomski & Anna Musz-Pomorska & Justyna Gołębiowska, 2023. "Hydrologic Effectiveness and Economic Efficiency of Green Architecture in Selected Urbanized Catchment," Land, MDPI, vol. 12(7), pages 1-19, June.
    4. Christel Vidaller & Anaïs Jouet & Carmen Van Mechelen & Tania De Almeida & Jérôme Cortet & Lucie Rivière & Grégory Mahy & Martin Hermy & Thierry Dutoit, 2023. "Coexistence and Succession of Spontaneous and Planted Vegetation on Extensive Mediterranean Green Roofs: Impacts on Soil, Seed Banks, and Mesofauna," Land, MDPI, vol. 12(9), pages 1-19, September.
    5. Gül Aslı Aksu & Şermin Tağıl & Nebiye Musaoğlu & Emel Seyrek Canatanoğlu & Adnan Uzun, 2022. "Landscape Ecological Evaluation of Cultural Patterns for the Istanbul Urban Landscape," Sustainability, MDPI, vol. 14(23), pages 1-26, November.
    6. Sungwan Son & Aya Elkamhawy & Choon-Man Jang, 2022. "Active Soil Filter System for Indoor Air Purification in School Classrooms," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    7. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    8. Mara Ottoboni & Salvatore Eugenio Pappalardo & Massimo De Marchi & Fabrizio Ungaro, 2023. "Characterization and Mapping of Public and Private Green Areas in the Municipality of Forlì (NE Italy) Using High-Resolution Images," Land, MDPI, vol. 12(3), pages 1-18, March.
    9. Xiaoxia Li & Guozhu Xia & Tao Lin & Zhonglin Xu & Yao Wang, 2022. "Construction of Urban Green Space Network in Kashgar City, China," Land, MDPI, vol. 11(10), pages 1-19, October.
    10. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).
    11. Jaime Aguilar Rojas & Amalesh Dhar & M. Anne Naeth, 2022. "Urban Green Spaces Restoration Using Native Forbs, Site Preparation and Soil Amendments—A Case Study," Land, MDPI, vol. 11(4), pages 1-15, March.
    12. He Li & Hongwei Guo & Xiaohan Lu & Jun Hu & Ke Zhong, 2024. "Zero-Energy Purification of Ambient Particulate Matter Using a Novel Double-Skin Façade System Integrated with Porous Materials," Sustainability, MDPI, vol. 16(6), pages 1-17, March.
    13. Walter Dachaga & Walter Timo de Vries, 2021. "Land Tenure Security and Health Nexus: A Conceptual Framework for Navigating the Connections between Land Tenure Security and Health," Land, MDPI, vol. 10(3), pages 1-21, March.
    14. Eunjoung Lee & Gunwoo Kim, 2022. "Analysis of Domestic and International Green Infrastructure Research Trends from the ESG Perspective in South Korea," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    15. Dongkwan Lee & Choongik Choi, 2021. "An Analysis of the Effects of Development-Restricted Areas on Land Price Using Spatial Analysis," Land, MDPI, vol. 10(6), pages 1-21, June.
    16. Isidro A. Pérez & Mª Ángeles García & Mª Luisa Sánchez & Nuria Pardo & Beatriz Fernández-Duque, 2020. "Key Points in Air Pollution Meteorology," IJERPH, MDPI, vol. 17(22), pages 1-14, November.
    17. Nana Guo & Xinbin Liang & Lingran Meng, 2022. "Evaluation of the Thermal Environmental Effects of Urban Ecological Networks—A Case Study of Xuzhou City, China," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    18. Chorong Song & Harumi Ikei & Yoshifumi Miyazaki, 2022. "Seasonal Differences in Physiological Responses to Walking in Urban Parks," IJERPH, MDPI, vol. 19(19), pages 1-9, September.
    19. Licheng Peng & Tariq Mehmood & Ruiqi Bao & Zezheng Wang & Dongdong Fu, 2022. "An Overview of Micro(Nano)Plastics in the Environment: Sampling, Identification, Risk Assessment and Control," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    20. Joanna Badach & Małgorzata Dymnicka & Andrzej Baranowski, 2020. "Urban Vegetation in Air Quality Management: A Review and Policy Framework," Sustainability, MDPI, vol. 12(3), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7568-:d:1139748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.