IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i3d10.1007_s11269-018-2172-5.html
   My bibliography  Save this article

The Effect of Geological Heterogeneity and Groundwater Table Depth on the Hydraulic Performance of Stormwater Infiltration Facilities

Author

Listed:
  • Andrea D’Aniello

    (University of Naples Federico II)

  • Luigi Cimorelli

    (University of Naples Federico II)

  • Luca Cozzolino

    (Parthenope University of Naples)

  • Domenico Pianese

    (University of Naples Federico II)

Abstract

Urbanization has led to a substantial change in the hydrological cycle of urban catchments. Increased runoff and urban flooding, decreased direct subsurface infiltration and groundwater recharge, deterioration of water quality are among the major effects of this alteration. To alleviate these effects, Low Impact Development (LID) practices have been frequently adopted for stormwater management. Among LID infrastructures, infiltration facilities are particularly challenging to design and model due to the considerable amount of uncertainties related to the hydrogeological configuration of installation sites. To date, analysis on how soil heterogeneity, groundwater table depth, and thickness of the unsaturated zone affect the hydraulic performance of infiltration facilities are lacking. To address this knowledge gap, a series of numerical experiments under transient variably water saturated conditions were performed for a hypothetical infiltration facility. Numerical simulations showed that i) infiltration rates increase considerably as the initial depth of the groundwater table increases, ii) the contribution of the bottom of the facility to the infiltration of water is generally higher than the sides, iii) the presence of a less conducting soil layer at a short depth from the bottom of the facility reduces infiltration rates dramatically, iv) the complete clogging of the bottom of the facility has a dramatic impact on the hydraulic performance, v) the stochastic heterogeneity of the soil controls the overall stormwater infiltration process through the facility, and the hydraulic performance may largely deviate from the case when heterogeneity is absent.

Suggested Citation

  • Andrea D’Aniello & Luigi Cimorelli & Luca Cozzolino & Domenico Pianese, 2019. "The Effect of Geological Heterogeneity and Groundwater Table Depth on the Hydraulic Performance of Stormwater Infiltration Facilities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1147-1166, February.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:3:d:10.1007_s11269-018-2172-5
    DOI: 10.1007/s11269-018-2172-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2172-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2172-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alhussein Adham Basheer & Elsayed I. Selim & Alaa Ahmed & Adel Kotb, 2024. "Evaluation of Groundwater Resources in the Qeft Area of Egypt: A Geophysical and Geochemical Perspective," Sustainability, MDPI, vol. 16(11), pages 1-22, June.
    2. Xiaoli Du & Mingzhe Yang & Zijie Yin & Xing Fang, 2023. "Influence of Initial Abstraction Ratios in NRCS-CN Model on Runoff Estimation of Permeable Brick Pavement Affected by Clogging," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3211-3225, June.
    3. Andrea D’Aniello & Luigi Cimorelli & Luca Cozzolino, 2019. "The Influence of Soil Stochastic Heterogeneity and Facility Dimensions on Stormwater Infiltration Facilities Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2399-2415, May.
    4. Riya Dutta & Rajib Maity & Parul Patel, 2022. "Short and Medium Range Forecast of Soil Moisture for the Different Climatic Regions of India Using Temporal Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 235-251, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renata Giedych & Gabriela Maksymiuk & Agata Cieszewska, 2024. "Eco-Spatial Indices as an Effective Tool for Climate Change Adaptation in Residential Neighbourhoods—Comparative Study," Land, MDPI, vol. 13(9), pages 1-18, September.
    2. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    3. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    5. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    6. Margareth Viecco & Sergio Vera & Héctor Jorquera & Waldo Bustamante & Jorge Gironás & Cynnamon Dobbs & Eduardo Leiva, 2018. "Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    7. Stefano Cascone, 2024. "Eco-Innovative Construction: Integrating Green Roofs Design within the BIM Framework," Sustainability, MDPI, vol. 16(5), pages 1-19, February.
    8. Seyed Mohammad Hossein Zakeri & Amir Mahdiyar, 2020. "The Hindrances to Green Roof Adoption in a Semi-Arid Climate Condition," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    9. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    10. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    11. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    12. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    13. Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    14. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    15. Carlo Alberto Campiotti & Carlo Bibbiani & Alberto Campiotti & Evelia Schettini & Corinna Viola & Giuliano Vox, 2016. "Innovative sustainable strategies in agro-food systems and in buildings for energy efficiency," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2016(2), pages 79-96.
    16. Tolessa Deksissa & Harris Trobman & Kamran Zendehdel & Hossain Azam, 2021. "Integrating Urban Agriculture and Stormwater Management in a Circular Economy to Enhance Ecosystem Services: Connecting the Dots," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    17. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Wang, Zhi-Hua & Zhao, Xiaoxi & Yang, Jiachuan & Song, Jiyun, 2016. "Cooling and energy saving potentials of shade trees and urban lawns in a desert city," Applied Energy, Elsevier, vol. 161(C), pages 437-444.
    19. Yasser Jezzini & Ghiwa Assaf & Rayan H. Assaad, 2023. "Models and Methods for Quantifying the Environmental, Economic, and Social Benefits and Challenges of Green Infrastructure: A Critical Review," Sustainability, MDPI, vol. 15(9), pages 1-40, May.
    20. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:3:d:10.1007_s11269-018-2172-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.