IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p1794-d149648.html
   My bibliography  Save this article

Experimental Performance Analysis of Flat Plate Solar Collectors Using Different Nanofluids

Author

Listed:
  • Erdoğan Arıkan

    (Department of Energy System Engineering, Engineering Faculty Cyprus International University, Nicosia, Via Mersin 10, Lefkosa 99010, Turkey)

  • Serkan Abbasoğlu

    (Department of Energy System Engineering, Engineering Faculty Cyprus International University, Nicosia, Via Mersin 10, Lefkosa 99010, Turkey)

  • Mustafa Gazi

    (Department of Chemistry, Arts&Science Faculty Eastern Mediterranean University, Famagusta, Via Mersin 10, Lefkosa 99010, Turkey)

Abstract

In this study, the effect of Al 2 O 3 -water and ZnO-water nanofluids, with and without ethylene glycol (EG), on the efficiency of a flat plate solar collector was investigated. Two systems were set up and the nanofluids with and without EG were examined at the same time. The volume fraction of the nanoparticles and EG were 0.25% and 25%, respectively. The study was conducted on three mass flow rates: 0.05 kg/s, 0.07 kg/s, and 0.09 kg/s. ASHRAE Standard 93-2010 was used to calculate the efficiency. The efficiency of the system was compared to distilled water (base fluid). The results also showed that an increase in the mass flow rate and use of the EG increased efficiency. Furthermore, in comparison with the base fluid, the maximum increase in efficiency (15.13%) was observed at 0.09 kg/s when using a Al 2 O 3 -water/EG nanofluid.

Suggested Citation

  • Erdoğan Arıkan & Serkan Abbasoğlu & Mustafa Gazi, 2018. "Experimental Performance Analysis of Flat Plate Solar Collectors Using Different Nanofluids," Sustainability, MDPI, vol. 10(6), pages 1-11, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1794-:d:149648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/1794/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/1794/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo, 2016. "Innovation in flat solar thermal collectors: A review of the last ten years experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1141-1159.
    2. Zamzamian, Amirhossein & KeyanpourRad, Mansoor & KianiNeyestani, Maryam & Jamal-Abad, Milad Tajik, 2014. "An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 71(C), pages 658-664.
    3. Orlando Montoya-Marquez & José Jasson Flores-Prieto, 2017. "The Effect of the Angle of Inclination on the Efficiency in a Medium-Temperature Flat Plate Solar Collector," Energies, MDPI, vol. 10(1), pages 1-11, January.
    4. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Paulo N. Torres & Carlos A. F. Fernandes & João Gomes & Bonfiglio Luc & Giovinazzo Carine & Olle Olsson & P. J. Costa Branco, 2018. "Effect of Reflector Geometry in the Annual Received Radiation of Low Concentration Photovoltaic Systems," Energies, MDPI, vol. 11(7), pages 1-15, July.
    2. Ammar A. Melaibari & Yacine Khetib & Abdullah K. Alanazi & S. Mohammad Sajadi & Mohsen Sharifpur & Goshtasp Cheraghian, 2021. "Applying Artificial Neural Network and Response Surface Method to Forecast the Rheological Behavior of Hybrid Nano-Antifreeze Containing Graphene Oxide and Copper Oxide Nanomaterials," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    3. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Influence of stable zinc oxide nanofluid on thermal characteristics of flat plate solar collector," Renewable Energy, Elsevier, vol. 152(C), pages 1160-1170.
    4. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Sumol Sae-Heng Pisitsungkakarn & Pichitpon Neamyou, 2022. "Efficiency of Semi-Automatic Control Ethanol Distillation Using a Vacuum-Tube Parabolic Solar Collector," Energies, MDPI, vol. 15(13), pages 1-18, June.
    6. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    7. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 1801-1814.
    8. Anil Kumar & Rajesh Maithani & Sachin Sharma & Sunil Kumar & Mohsen Sharifpur & Tabish Alam & Naveen Kumar Gupta & Sayed M. Eldin, 2022. "Effect of Dimpled Rib with Arc Pattern on Hydrothermal Characteristics of Al 2 O 3 -H 2 O Nanofluid Flow in a Square Duct," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    9. Abu Shadate Faisal Mahamude & Muhamad Kamal Kamarulzaman & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Rosli Abu Bakar & Talal Yusaf & Sivarao Subramanion & Belal , 2022. "A Comprehensive Review on Efficiency Enhancement of Solar Collectors Using Hybrid Nanofluids," Energies, MDPI, vol. 15(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    2. Woobin Kang & Yunchan Shin & Honghyun Cho, 2017. "Economic Analysis of Flat-Plate and U-Tube Solar Collectors Using an Al 2 O 3 Nanofluid," Energies, MDPI, vol. 10(11), pages 1-15, November.
    3. Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.
    4. Leong, K.Y. & Ong, Hwai Chyuan & Amer, N.H. & Norazrina, M.J. & Risby, M.S. & Ku Ahmad, K.Z., 2016. "An overview on current application of nanofluids in solar thermal collector and its challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1092-1105.
    5. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2018. "Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector," Renewable Energy, Elsevier, vol. 116(PA), pages 9-21.
    7. Bellos, Evangelos & Tzivanidis, Christos, 2017. "Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 114(PB), pages 1376-1393.
    8. Saffarian, Mohammad Reza & Moravej, Mojtaba & Doranehgard, Mohammad Hossein, 2020. "Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid," Renewable Energy, Elsevier, vol. 146(C), pages 2316-2329.
    9. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 1801-1814.
    10. Raj, Pankaj & Subudhi, Sudhakar, 2018. "A review of studies using nanofluids in flat-plate and direct absorption solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 54-74.
    11. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    12. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    13. Farajzadeh, Ehsan & Movahed, Saeid & Hosseini, Reza, 2018. "Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector," Renewable Energy, Elsevier, vol. 118(C), pages 122-130.
    14. Delfani, S. & Karami, M. & Behabadi, M.A. Akhavan-, 2016. "Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid," Renewable Energy, Elsevier, vol. 87(P1), pages 754-764.
    15. Jamal-Abad, Milad Tajik & Saedodin, Seyfollah & Aminy, Mohammad, 2017. "Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media," Renewable Energy, Elsevier, vol. 107(C), pages 156-163.
    16. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    17. Jouybari, H. Javaniyan & Saedodin, S. & Zamzamian, A. & Nimvari, M. Eshagh & Wongwises, S., 2017. "Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study," Renewable Energy, Elsevier, vol. 114(PB), pages 1407-1418.
    18. Coccia, Gianluca & Tomassetti, Sebastiano & Di Nicola, Giovanni, 2021. "Thermal conductivity of nanofluids: A review of the existing correlations and a scaled semi-empirical equation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
    20. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1794-:d:149648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.