IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v116y2018ipap9-21.html
   My bibliography  Save this article

Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector

Author

Listed:
  • Bianco, Vincenzo
  • Scarpa, Federico
  • Tagliafico, Luca A.

Abstract

The present paper proposes an investigation on the application of Al2O3-water nanofluid within a PV/T panel in order to assess the potential to improve the performance of the device. The analysis has been carried out by developing a numerical model by means of the commercial software Comsol. Two dimensional nanofluids laminar convection flows for Re comprised between 250 and 1000, concentration between 0% and 6%, inlet temperatures of 293.15 K and 323 K and particles dimension of 20 and 40 nm have been simulated in an asymmetric heated channel. Under an imposed external heat flux of 1000 W on the top surface of the channel, the results show that nanofluids guarantee better cooling performances, in fact a decrease in top wall temperature of ∼3 K is observed for an inlet temperature of 293.15 K and a reduction of ∼5 K is observed for an inlet temperature of 323 K. Nusselt number and average heat transfer coefficient for nanofluids also increase in a range between 2% and 15%. On the contrary, a relevant increase of pressure drops is detected. The combined effect of heat transfer enhancement and pressure drop increase has been investigated by implementing an entropy generation analysis, which highlights that reduction of thermal entropy generation is more significant than the increase of frictional entropy generation.

Suggested Citation

  • Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2018. "Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector," Renewable Energy, Elsevier, vol. 116(PA), pages 9-21.
  • Handle: RePEc:eee:renene:v:116:y:2018:i:pa:p:9-21
    DOI: 10.1016/j.renene.2017.09.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117309308
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.09.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rejeb, Oussama & Dhaou, Houcine & Jemni, Abdelmajid, 2015. "A numerical investigation of a photovoltaic thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 77(C), pages 43-50.
    2. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo, 2016. "Innovation in flat solar thermal collectors: A review of the last ten years experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1141-1159.
    3. Tagliafico, Luca A. & Scarpa, Federico & De Rosa, Mattia, 2014. "Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 526-537.
    4. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "Thermal and exergy optimization of a nanofluid-based direct absorption solar collector," Renewable Energy, Elsevier, vol. 106(C), pages 274-287.
    5. Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2013. "A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids," Applied Energy, Elsevier, vol. 111(C), pages 80-93.
    6. Bellos, E. & Tzivanidis, C. & Antonopoulos, K.A. & Gkinis, G., 2016. "Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube," Renewable Energy, Elsevier, vol. 94(C), pages 213-222.
    7. Kaloudis, E. & Papanicolaou, E. & Belessiotis, V., 2016. "Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model," Renewable Energy, Elsevier, vol. 97(C), pages 218-229.
    8. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    9. Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2016. "Double skin facades (DSF) and building integrated photovoltaics (BIPV): A review of configurations and heat transfer characteristics," Renewable Energy, Elsevier, vol. 89(C), pages 743-756.
    10. Alashkar, Adnan & Gadalla, Mohamed, 2017. "Thermo-economic analysis of an integrated solar power generation system using nanofluids," Applied Energy, Elsevier, vol. 191(C), pages 469-491.
    11. Saadon, Syamimi & Gaillard, Leon & Giroux-Julien, Stéphanie & Ménézo, Christophe, 2016. "Simulation study of a naturally-ventilated building integrated photovoltaic/thermal (BIPV/T) envelope," Renewable Energy, Elsevier, vol. 87(P1), pages 517-531.
    12. Che Sidik, Nor Azwadi & Witri Mohd Yazid, Muhammad Noor Afiq & Mamat, Rizalman, 2017. "Recent advancement of nanofluids in engine cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 137-144.
    13. Ahmed, Omer Khalil & Mohammed, Zala Aziz, 2017. "Influence of porous media on the performance of hybrid PV/Thermal collector," Renewable Energy, Elsevier, vol. 112(C), pages 378-387.
    14. Yandri, Erkata, 2017. "The effect of Joule heating to thermal performance of hybrid PVT collector during electricity generation," Renewable Energy, Elsevier, vol. 111(C), pages 344-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis," Renewable Energy, Elsevier, vol. 141(C), pages 246-258.
    2. Bazdidi-Tehrani, Farzad & Khabazipur, Arash & Vasefi, Seyed Iman, 2018. "Flow and heat transfer analysis of TiO2/water nanofluid in a ribbed flat-plate solar collector," Renewable Energy, Elsevier, vol. 122(C), pages 406-418.
    3. Manh, Tran Dinh & Khan, Ahmad Raza & Shafee, Ahmad & Nam, Nguyen Dang & Tlili, I. & Nguyen-Thoi, Trung & Li, Z., 2020. "Hybrid nanoparticles migration due to MHD free convection considering radiation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    4. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    5. Humphrey ADUN & Mustapha Mukhtar & Micheal Adedeji & Terfa Agwa & Kefas Hyelda Ibrahim & Olusola Bamisile & Mustafa Dagbasi, 2021. "Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids," Energies, MDPI, vol. 14(15), pages 1-26, July.
    6. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    7. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2020. "The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler," Energy, Elsevier, vol. 190(C).
    8. Kazemian, Arash & Salari, Ali & Hakkaki-Fard, Ali & Ma, Tao, 2019. "Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material," Applied Energy, Elsevier, vol. 238(C), pages 734-746.
    9. Purohit, Nilesh & Jakhar, Sanjeev & Gullo, Paride & Dasgupta, Mani Sankar, 2018. "Heat transfer and entropy generation analysis of alumina/water nanofluid in a flat plate PV/T collector under equal pumping power comparison criterion," Renewable Energy, Elsevier, vol. 120(C), pages 14-22.
    10. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Sarafraz, M.M. & Safaei, M.R., 2019. "Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension," Renewable Energy, Elsevier, vol. 142(C), pages 364-372.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    2. Bellos, Evangelos & Tzivanidis, Christos, 2017. "Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 114(PB), pages 1376-1393.
    3. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    4. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    5. Purohit, Nilesh & Jakhar, Sanjeev & Gullo, Paride & Dasgupta, Mani Sankar, 2018. "Heat transfer and entropy generation analysis of alumina/water nanofluid in a flat plate PV/T collector under equal pumping power comparison criterion," Renewable Energy, Elsevier, vol. 120(C), pages 14-22.
    6. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Mwesigye, Aggrey & Yılmaz, İbrahim Halil & Meyer, Josua P., 2018. "Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid," Renewable Energy, Elsevier, vol. 119(C), pages 844-862.
    8. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    9. Subramani, J. & Nagarajan, P.K. & Mahian, Omid & Sathyamurthy, Ravishankar, 2018. "Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime," Renewable Energy, Elsevier, vol. 119(C), pages 19-31.
    10. Tagle-Salazar, Pablo D. & Nigam, K.D.P. & Rivera-Solorio, Carlos I., 2018. "Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids," Renewable Energy, Elsevier, vol. 125(C), pages 334-343.
    11. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    12. Kaya, Hüseyin & Arslan, Kamil & Eltugral, Nurettin, 2018. "Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 329-338.
    13. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    14. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    15. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    16. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    17. Sheikholeslami, M. & Farshad, Seyyed Ali & Shafee, Ahmad & Babazadeh, Houman, 2021. "Performance of solar collector with turbulator involving nanomaterial turbulent regime," Renewable Energy, Elsevier, vol. 163(C), pages 1222-1237.
    18. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.
    20. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:116:y:2018:i:pa:p:9-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.