IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v236y2016i2d10.1007_s10479-015-1949-7.html
   My bibliography  Save this article

Variable neighborhood search for the stochastic and dynamic vehicle routing problem

Author

Listed:
  • Briseida Sarasola

    (University of Vienna)

  • Karl F. Doerner

    (University of Vienna)

  • Verena Schmid

    (University of Vienna)

  • Enrique Alba

    (University of Malaga)

Abstract

In this paper, the authors consider the vehicle routing problem (VRP) with stochastic demand and/or dynamic requests. The classical VRP consists of determining a set of routes starting and ending at a depot that provide service to a set of customers. Stochastic demands are only revealed when the vehicle arrives at the customer location; dynamic requests mean that new orders from previously unknown customers can be received and scheduled over time. The variable neighborhood search algorithm (VNS) proposed in this study can be extended by sampling for stochastic scenarios and adapted for the dynamic setting. We use standard sets of benchmark instances to evaluate our algorithms. When applying sampling based VNS, on average we were able to improve results obtained by a classical VNS by 4.39 %. Individual instances could be improved by up to 8.12 %. In addition, the proposed VNS framework matches 32 out of 40 best known solutions and provides one new best solution. In the dynamic case, VNS improves on existing results and provides new best solutions for 7 out of 21 instances. Finally, this study offers results for stochastic and dynamic scenarios. Our experiments show that the sampling based dynamic VNS provides better results when the demand deviation is small, and reduces the excess route duration by 45–90 %.

Suggested Citation

  • Briseida Sarasola & Karl F. Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
  • Handle: RePEc:spr:annopr:v:236:y:2016:i:2:d:10.1007_s10479-015-1949-7
    DOI: 10.1007/s10479-015-1949-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-1949-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-1949-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    2. Justin C. Goodson & Jeffrey W. Ohlmann & Barrett W. Thomas, 2013. "Rollout Policies for Dynamic Solutions to the Multivehicle Routing Problem with Stochastic Demand and Duration Limits," Operations Research, INFORMS, vol. 61(1), pages 138-154, February.
    3. Christophe Duhamel & Jean-Yves Potvin & Jean-Marc Rousseau, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows," Transportation Science, INFORMS, vol. 31(1), pages 49-59, February.
    4. Michel Gendreau & Gilbert Laporte & René Séguin, 1996. "A Tabu Search Heuristic for the Vehicle Routing Problem with Stochastic Demands and Customers," Operations Research, INFORMS, vol. 44(3), pages 469-477, June.
    5. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    6. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    7. Nicola Secomandi & François Margot, 2009. "Reoptimization Approaches for the Vehicle-Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 57(1), pages 214-230, February.
    8. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    9. Li, Xiangyong & Tian, Peng & Leung, Stephen C.H., 2010. "Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm," International Journal of Production Economics, Elsevier, vol. 125(1), pages 137-145, May.
    10. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2010. "The Vehicle Routing Problem with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 44(4), pages 474-492, November.
    11. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    12. LECLUYSE, C. & VAN WOENSEL, Tom & PEREMANS, Herbert, 2007. "Vehicle routing with stochastic time-dependent travel times," Working Papers 2007018, University of Antwerp, Faculty of Business and Economics.
    13. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    14. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    15. Q Mu & Z Fu & J Lysgaard & R Eglese, 2011. "Disruption management of the vehicle routing problem with vehicle breakdown," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 742-749, April.
    16. Aykagan Ak & Alan L. Erera, 2007. "A Paired-Vehicle Recourse Strategy for the Vehicle-Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 41(2), pages 222-237, May.
    17. Augerat, P. & Belenguer, J. M. & Benavent, E. & Corberan, A. & Naddef, D., 1998. "Separating capacity constraints in the CVRP using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 546-557, April.
    18. A N Letchford & J Lysgaard & R W Eglese, 2007. "A branch-and-cut algorithm for the capacitated open vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1642-1651, December.
    19. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    20. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    21. Nicola Secomandi, 2001. "A Rollout Policy for the Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 49(5), pages 796-802, October.
    22. R. Montemanni & L. M. Gambardella & A. E. Rizzoli & A. V. Donati, 2005. "Ant Colony System for a Dynamic Vehicle Routing Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 327-343, December.
    23. Gilbert Laporte & FranÇois V. Louveaux & Luc van Hamme, 2002. "An Integer L -Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 50(3), pages 415-423, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
    2. Ouyang, Zhiyuan & Leung, Eric Ka Ho & Huang, George Q., 2022. "Community logistics for dynamic vehicle dispatching: The effects of community departure “time” and “space”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    3. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    4. Xiaoyun Jiang & Xiangxin Liu & Fubin Pan & Zinuo Han, 2024. "Optimizing Cold Chain Distribution Routes Considering Dynamic Demand: A Low-Emission Perspective," Sustainability, MDPI, vol. 16(5), pages 1-17, February.
    5. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    6. Minghong Ma & Fei Yang, 2024. "Dynamic migratory beekeeping route recommendation based on spatio-temporal distribution of nectar sources," Annals of Operations Research, Springer, vol. 341(2), pages 1075-1105, October.
    7. Mohammed Bazirha & Abdeslam Kadrani & Rachid Benmansour, 2023. "Stochastic home health care routing and scheduling problem with multiple synchronized services," Annals of Operations Research, Springer, vol. 320(2), pages 573-601, January.
    8. Shi, Yong & Boudouh, Toufik & Grunder, Olivier, 2019. "A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 52-95.
    9. Olivera Janković & Stefan Mišković & Zorica Stanimirović & Raca Todosijević, 2017. "Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems," Annals of Operations Research, Springer, vol. 259(1), pages 191-216, December.
    10. Gregorio Tirado & Lars Magnus Hvattum, 2017. "Improved solutions to dynamic and stochastic maritime pick-up and delivery problems using local search," Annals of Operations Research, Springer, vol. 253(2), pages 825-843, June.
    11. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    12. Marlin W. Ulmer, 2020. "Horizontal combinations of online and offline approximate dynamic programming for stochastic dynamic vehicle routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 279-308, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    2. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    3. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    4. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    5. Luo, Zhixing & Qin, Hu & Zhang, Dezhi & Lim, Andrew, 2016. "Adaptive large neighborhood search heuristics for the vehicle routing problem with stochastic demands and weight-related cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 69-89.
    6. Bertazzi, Luca & Secomandi, Nicola, 2018. "Faster rollout search for the vehicle routing problem with stochastic demands and restocking," European Journal of Operational Research, Elsevier, vol. 270(2), pages 487-497.
    7. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A Rule-Based Recourse for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 53(5), pages 1334-1353, September.
    8. Zhang, Junlong & Lam, William H.K. & Chen, Bi Yu, 2016. "On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows," European Journal of Operational Research, Elsevier, vol. 249(1), pages 144-154.
    9. Florent Hernandez & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A local branching matheuristic for the multi-vehicle routing problem with stochastic demands," Journal of Heuristics, Springer, vol. 25(2), pages 215-245, April.
    10. Mathias A. Klapp & Alan L. Erera & Alejandro Toriello, 2018. "The One-Dimensional Dynamic Dispatch Waves Problem," Transportation Science, INFORMS, vol. 52(2), pages 402-415, March.
    11. Jorge E. Mendoza & Louis-Martin Rousseau & Juan G. Villegas, 2016. "A hybrid metaheuristic for the vehicle routing problem with stochastic demand and duration constraints," Journal of Heuristics, Springer, vol. 22(4), pages 539-566, August.
    12. F. Hooshmand Khaligh & S.A. MirHassani, 2016. "A mathematical model for vehicle routing problem under endogenous uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 579-590, January.
    13. Chrysanthos E. Gounaris & Wolfram Wiesemann & Christodoulos A. Floudas, 2013. "The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty," Operations Research, INFORMS, vol. 61(3), pages 677-693, June.
    14. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    15. Shukla, Nagesh & Choudhary, A.K. & Prakash, P.K.S. & Fernandes, K.J. & Tiwari, M.K., 2013. "Algorithm portfolios for logistics optimization considering stochastic demands and mobility allowance," International Journal of Production Economics, Elsevier, vol. 141(1), pages 146-166.
    16. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2010. "The Vehicle Routing Problem with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 44(4), pages 474-492, November.
    17. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    18. Jinil Han & Chungmok Lee & Sungsoo Park, 2014. "A Robust Scenario Approach for the Vehicle Routing Problem with Uncertain Travel Times," Transportation Science, INFORMS, vol. 48(3), pages 373-390, August.
    19. Goodson, Justin C., 2015. "A priori policy evaluation and cyclic-order-based simulated annealing for the multi-compartment vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 241(2), pages 361-369.
    20. Klapp, Mathias A. & Erera, Alan L. & Toriello, Alejandro, 2018. "The Dynamic Dispatch Waves Problem for same-day delivery," European Journal of Operational Research, Elsevier, vol. 271(2), pages 519-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:236:y:2016:i:2:d:10.1007_s10479-015-1949-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.