IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6135-d392022.html
   My bibliography  Save this article

Thermal Sensation in Courtyards: Potentialities as a Passive Strategy in Tropical Climates

Author

Listed:
  • Ivan Julio Apolonio Callejas

    (Department of Architecture and Urbanism, Faculty of Architecture, Engineering and Technology, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, 78060-900 Cuiabá, Estado de Mato Grosso, Brazil)

  • Luciane Cleonice Durante

    (Department of Architecture and Urbanism, Faculty of Architecture, Engineering and Technology, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, 78060-900 Cuiabá, Estado de Mato Grosso, Brazil)

  • Eduardo Diz-Mellado

    (Department of Architectural Constructions, Higher Technical School of Architecture, tamento de Construcciones Arquitectónicas 1, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Avda. Reina Mercedes, 2, 41012 Seville, Spain)

  • Carmen Galán-Marín

    (Department of Architectural Constructions, Higher Technical School of Architecture, tamento de Construcciones Arquitectónicas 1, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Avda. Reina Mercedes, 2, 41012 Seville, Spain)

Abstract

Climate change will bring changes to our living conditions, particularly in urban areas. Climate-responsive design strategies through courtyards can help to moderate temperatures and reduce the thermal stress of its occupants. Thermal response inside courtyard is affected not only by its morphological composition but also by subjective factors. Thus, standardized thermal scales may not reflect the stress of the occupants. This study investigated the impact on thermal attenuation provided by a courtyard located in a tropical climate under extreme cold and hot synoptic conditions by means of local thermal sensation scales. Microclimatic variables were monitored, simultaneously with the application of a thermal comfort questionnaire, by using weather stations installed outside and inside the courtyard. The Modified Physiological Equivalent Temperature Index (mPET) was utilized to predict the heat stress. Calibration was conducted using linear regression to attribute particular thermal sensation votes to correspondent mPET values. It was found that thermal sensation can be affected by factors such as psychological, behavioral, and physiological. The courtyard’s form provides a passive cooling effect, stabilizing interior thermal sensation, with attenuation peaks of 6.4 °C on a cold day and 5.0 °C on a hot day. Courtyards are an alternative passive strategy to improve thermal ambience in tropical climate, counterbalancing climate change.

Suggested Citation

  • Ivan Julio Apolonio Callejas & Luciane Cleonice Durante & Eduardo Diz-Mellado & Carmen Galán-Marín, 2020. "Thermal Sensation in Courtyards: Potentialities as a Passive Strategy in Tropical Climates," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6135-:d:392022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodríguez-Algeciras, José & Tablada, Abel & Chaos-Yeras, Mabel & De la Paz, Guillermo & Matzarakis, Andreas, 2018. "Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba," Renewable Energy, Elsevier, vol. 125(C), pages 840-856.
    2. Cantón, María Alicia & Ganem, Carolina & Barea, Gustavo & Llano, Jorge Fernández, 2014. "Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building," Renewable Energy, Elsevier, vol. 69(C), pages 437-446.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Itma & Sameh Monna, 2022. "The Role of Collective Spaces in Achieving Social Sustainability: A Comparative Approach to Enhance Urban Design," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    2. Hiba Najini & Mutasim Nour & Sulaiman Al-Zuhair & Fadi Ghaith, 2020. "Techno-Economic Analysis of Green Building Codes in United Arab Emirates Based on a Case Study Office Building," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    3. Eduardo Diz-Mellado & Samuele Rubino & Soledad Fernández-García & Macarena Gómez-Mármol & Carlos Rivera-Gómez & Carmen Galán-Marín, 2021. "Applied Machine Learning Algorithms for Courtyards Thermal Patterns Accurate Prediction," Mathematics, MDPI, vol. 9(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Rojas-Fernández & Carmen Galán-Marín & Jorge Roa-Fernández & Carlos Rivera-Gómez, 2017. "Correlations between GIS-Based Urban Building Densification Analysis and Climate Guidelines for Mediterranean Courtyards," Sustainability, MDPI, vol. 9(12), pages 1-26, December.
    2. Xiaodong Xu & Fenlan Luo & Wei Wang & Tianzhen Hong & Xiuzhang Fu, 2018. "Performance-Based Evaluation of Courtyard Design in China’s Cold-Winter Hot-Summer Climate Regions," Sustainability, MDPI, vol. 10(11), pages 1-19, October.
    3. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Anxiao Zhang & Regina Bokel & Andy Van den Dobbelsteen & Yanchen Sun & Qiong Huang & Qi Zhang, 2017. "The Effect of Geometry Parameters on Energy and Thermal Performance of School Buildings in Cold Climates of China," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    5. Yujie Lin & Yumeng Jin & Hong Jin, 2019. "Field Study on the Microclimate of Public Spaces in Traditional Residential Areas in a Severe Cold Region of China," IJERPH, MDPI, vol. 16(16), pages 1-16, August.
    6. Enrique Ángel Rodríguez Jara & Francisco José Sánchez de la Flor & Servando Álvarez Domínguez & José Manuel Salmerón Lissén & Alejandro Rincón Casado, 2017. "Characterizing the Air Temperature Drop in Mediterranean Courtyards from Monitoring Campaigns," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    7. Nazanin Nasrollahi & Amir Ghosouri & Jamal Khodakarami & Mohammad Taleghani, 2020. "Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review," Sustainability, MDPI, vol. 12(23), pages 1-23, November.
    8. Ahmed Yasser Abdelmejeed & Dietwald Gruehn, 2023. "Optimization of Microclimate Conditions Considering Urban Morphology and Trees Using ENVI-Met: A Case Study of Cairo City," Land, MDPI, vol. 12(12), pages 1-32, December.
    9. Zamani, Zahra & Heidari, Shahin & Hanachi, Pirouz, 2018. "Reviewing the thermal and microclimatic function of courtyards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 580-595.
    10. Eduardo Diz-Mellado & Samuele Rubino & Soledad Fernández-García & Macarena Gómez-Mármol & Carlos Rivera-Gómez & Carmen Galán-Marín, 2021. "Applied Machine Learning Algorithms for Courtyards Thermal Patterns Accurate Prediction," Mathematics, MDPI, vol. 9(10), pages 1-19, May.
    11. Hao Sun & Carlos Jimenez-Bescos & Murtaza Mohammadi & Fangliang Zhong & John Kaiser Calautit, 2021. "Numerical Investigation of the Influence of Vegetation on the Aero-Thermal Performance of Buildings with Courtyards in Hot Climates," Energies, MDPI, vol. 14(17), pages 1-25, August.
    12. Wei, Jin & Ni, Yang & Zhang, Yue-Jun, 2020. "The mitigation strategies for bottom environment of service-oriented public building from a micro-scale perspective: A case study in China," Energy, Elsevier, vol. 205(C).
    13. Kristian Fabbri & Jacopo Gaspari & Alessia Costa & Sofia Principi, 2022. "The Role of Architectural Skin Emissivity Influencing Outdoor Microclimatic Comfort: A Case Study in Bologna, Italy," Sustainability, MDPI, vol. 14(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6135-:d:392022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.