IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v69y2014icp437-446.html
   My bibliography  Save this article

Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building

Author

Listed:
  • Cantón, María Alicia
  • Ganem, Carolina
  • Barea, Gustavo
  • Llano, Jorge Fernández

Abstract

This paper presents the results of applying an experimental and theoretical model for the assessment of courtyards as a passive strategy for interior space conditioning. Two representative case studies, in a refurbished pre-elementary school building in Mendoza, Argentina, were selected for the analysis. The summer thermal behaviour was analysed through HOBO H08-003-02 data loggers installed in two courtyards and in the adjacent classrooms. The record included weather data every 15 min for 40 summer days. Finally, a dynamic simulation of the two case studies and theoretical cases was carried out. The objective was to assess the impact of different open space design variables on the energy consumption necessary for obtaining comfort conditions in the interior space (base temperature: 25 °C). Overall results indicate that, in semi dry areas with a large number of clear sky days, the shade condition of the courtyard is the strategy that most highly impacts the thermal and energy conditions in classrooms.

Suggested Citation

  • Cantón, María Alicia & Ganem, Carolina & Barea, Gustavo & Llano, Jorge Fernández, 2014. "Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building," Renewable Energy, Elsevier, vol. 69(C), pages 437-446.
  • Handle: RePEc:eee:renene:v:69:y:2014:i:c:p:437-446
    DOI: 10.1016/j.renene.2014.03.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114002407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrique Ángel Rodríguez Jara & Francisco José Sánchez de la Flor & Servando Álvarez Domínguez & José Manuel Salmerón Lissén & Alejandro Rincón Casado, 2017. "Characterizing the Air Temperature Drop in Mediterranean Courtyards from Monitoring Campaigns," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    2. Juan Rojas-Fernández & Carmen Galán-Marín & Jorge Roa-Fernández & Carlos Rivera-Gómez, 2017. "Correlations between GIS-Based Urban Building Densification Analysis and Climate Guidelines for Mediterranean Courtyards," Sustainability, MDPI, vol. 9(12), pages 1-26, December.
    3. Ivan Julio Apolonio Callejas & Luciane Cleonice Durante & Eduardo Diz-Mellado & Carmen Galán-Marín, 2020. "Thermal Sensation in Courtyards: Potentialities as a Passive Strategy in Tropical Climates," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    4. Xiaodong Xu & Fenlan Luo & Wei Wang & Tianzhen Hong & Xiuzhang Fu, 2018. "Performance-Based Evaluation of Courtyard Design in China’s Cold-Winter Hot-Summer Climate Regions," Sustainability, MDPI, vol. 10(11), pages 1-19, October.
    5. Anxiao Zhang & Regina Bokel & Andy Van den Dobbelsteen & Yanchen Sun & Qiong Huang & Qi Zhang, 2017. "The Effect of Geometry Parameters on Energy and Thermal Performance of School Buildings in Cold Climates of China," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    6. Hao Sun & Carlos Jimenez-Bescos & Murtaza Mohammadi & Fangliang Zhong & John Kaiser Calautit, 2021. "Numerical Investigation of the Influence of Vegetation on the Aero-Thermal Performance of Buildings with Courtyards in Hot Climates," Energies, MDPI, vol. 14(17), pages 1-25, August.
    7. Wei, Jin & Ni, Yang & Zhang, Yue-Jun, 2020. "The mitigation strategies for bottom environment of service-oriented public building from a micro-scale perspective: A case study in China," Energy, Elsevier, vol. 205(C).
    8. Zamani, Zahra & Heidari, Shahin & Hanachi, Pirouz, 2018. "Reviewing the thermal and microclimatic function of courtyards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 580-595.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:69:y:2014:i:c:p:437-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.