IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3645-d175005.html
   My bibliography  Save this article

Future Global Air Quality Indices under Different Socioeconomic and Climate Assumptions

Author

Listed:
  • Lara Aleluia Reis

    (RFF-CMCC European Institute on Economics and the Environment (EIEE), 20144 Milan, Italy)

  • Laurent Drouet

    (RFF-CMCC European Institute on Economics and the Environment (EIEE), 20144 Milan, Italy)

  • Rita Van Dingenen

    (European Commission, Joint Research Centre (JRC), Directorate for Energy, Transport and Climate, 21027 Ispra, Italy)

  • Johannes Emmerling

    (RFF-CMCC European Institute on Economics and the Environment (EIEE), 20144 Milan, Italy)

Abstract

Future socioeconomic developments and climate policies will play a role in air quality improvement since greenhouse gases and air pollutant emissions are highly connected. As these interactions are complex, air quality indices are useful tools to assess the sustainability of future policies. Here, we compute new global annual air quality indices to provide insights into future global and regional air quality, allowing for the evaluation of the sustainability of climate policies. We project the future concentrations of major the air pollutants for five socioeconomic pathways covering a broad range of climate radiative forcing targets in 2100, using a fast transport chemistry emulator and the emission database produced for the sixth assessment report of the Intergovernmental Panel on Climate Change. Our findings show that climate policies are very relevant in reducing air pollution exposure by mid-century. Climate policies will have a stronger effect on the pollution reduction timing, while socioeconomic developments will have a greater impact on the absolute pollution level. A 1.5 ∘ C policy target may prevent all regions from exceeding the annual average limit for all pollutants considered, except PM 2.5 . We emphasize the importance of considering exposure air quality indices, when assessing sustainable policies, as being more informative rather than a population-weighted average index.

Suggested Citation

  • Lara Aleluia Reis & Laurent Drouet & Rita Van Dingenen & Johannes Emmerling, 2018. "Future Global Air Quality Indices under Different Socioeconomic and Climate Assumptions," Sustainability, MDPI, vol. 10(10), pages 1-27, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3645-:d:175005
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    2. Johannes Emmerling & Laurent Drouet & Lara Aleluia Reis & Michela Bevione & Loic Berger & Valentina Bosetti & Samuel Carrara & Enrica De Cian & Gauthier De Maere D'Aertrycke & Tom Longden & Maurizio M, 2016. "The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways," Working Papers 2016.42, Fondazione Eni Enrico Mattei.
    3. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    4. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Walerysiak & Henryk Wojtaszek & Ireneusz Miciula, 2020. "Dynamic Effects of Sustainable Development Activities in the Air Quality for Selected Countries," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 135-147.
    2. Yuting Xue & Kai Liu, 2022. "Regional Differences, Distribution Dynamics, and Convergence of Air Quality in Urban Agglomerations in China," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    3. Getachew F. Belete & Alexey Voinov & Iñaki Arto & Kishore Dhavala & Tatyana Bulavskaya & Leila Niamir & Saeed Moghayer & Tatiana Filatova, 2019. "Exploring Low-Carbon Futures: A Web Service Approach to Linking Diverse Climate-Energy-Economy Models," Energies, MDPI, vol. 12(15), pages 1-24, July.
    4. Mathijs J. H. M. Harmsen & Pim Dorst & Detlef P. Vuuren & Maarten Berg & Rita Dingenen & Zbigniew Klimont, 2020. "Co-benefits of black carbon mitigation for climate and air quality," Climatic Change, Springer, vol. 163(3), pages 1519-1538, December.
    5. Sungbo Shim & Hyunmin Sung & Sanghoon Kwon & Jisun Kim & Jaehee Lee & Minah Sun & Jaeyoung Song & Jongchul Ha & Younghwa Byun & Yeonhee Kim & Steven T. Turnock & David S. Stevenson & Robert J. Allen &, 2021. "Regional Features of Long-Term Exposure to PM 2.5 Air Quality over Asia under SSP Scenarios Based on CMIP6 Models," IJERPH, MDPI, vol. 18(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    2. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    4. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    5. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    6. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    7. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    8. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    9. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    10. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    11. Osamu Nishiura & Makoto Tamura & Shinichiro Fujimori & Kiyoshi Takahashi & Junya Takakura & Yasuaki Hijioka, 2020. "An Assessment of Global Macroeconomic Impacts Caused by Sea Level Rise Using the Framework of Shared Socioeconomic Pathways and Representative Concentration Pathways," Sustainability, MDPI, vol. 12(9), pages 1-12, May.
    12. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.
    13. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    14. Gregory J. Scott & Athanasios Petsakos & Henry Juarez, 2019. "Climate change, food security, and future scenarios for potato production in India to 2030," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(1), pages 43-56, February.
    15. Parinaz Rashidi & Sopan D. Patil & Aafke M. Schipper & Rob Alkemade & Isabel Rosa, 2023. "Downscaling Global Land-Use Scenario Data to the National Level: A Case Study for Belgium," Land, MDPI, vol. 12(9), pages 1-19, September.
    16. Leibin Wang & Robert V. Rohli & Qigen Lin & Shaofei Jin & Xiaodong Yan, 2022. "Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming," Sustainability, MDPI, vol. 14(18), pages 1-13, September.
    17. Food and Agriculture Organization of the United Nations (FAO), "undated". "The future of food and agriculture – Alternative pathways to 2050," The Future of Food and Agriculture 319842, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    18. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    19. Calzadilla, Alvaro & Carr, Tony, 2020. "Land degradation and food security: impacts and adaptation options," Conference papers 333148, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Abhishek Chaudhary & Arne O. Mooers, 2018. "Terrestrial Vertebrate Biodiversity Loss under Future Global Land Use Change Scenarios," Sustainability, MDPI, vol. 10(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3645-:d:175005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.