IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt0x73t2jw.html
   My bibliography  Save this paper

OBDEnergy: Making Metrics Meaningful in Eco-driving Feedback

Author

Listed:
  • Ahmed, Sumayyah
  • Sanguinetti, Angela

Abstract

This paper describes an eco-driving feedback system, OBDEnergy. Twenty-six drivers described their understanding of environmental impacts of driving before and after using OBDEnergy. Before OBDEnergy, participants discussed impacts in abstract, global terms (pollution, global warming). After OBDEnergy, participants appealed to concrete reference points (gallons of gas, trees required) with calculations and comparisons. We conclude that user-centered eco-driving feedback can contribute to pro-environmental behavior via increased awareness of the concrete environmental impacts of driving.

Suggested Citation

  • Ahmed, Sumayyah & Sanguinetti, Angela, 2015. "OBDEnergy: Making Metrics Meaningful in Eco-driving Feedback," Institute of Transportation Studies, Working Paper Series qt0x73t2jw, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt0x73t2jw
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0x73t2jw.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barkenbus, Jack N., 2010. "Eco-driving: An overlooked climate change initiative," Energy Policy, Elsevier, vol. 38(2), pages 762-769, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro Stabile & Federico Ballo & Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2023. "Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios," Energies, MDPI, vol. 16(3), pages 1-19, January.
    2. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    3. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    4. Geir H. M. Bjertnæs, 2019. "Efficient taxation of fuel and road use," Discussion Papers 905, Statistics Norway, Research Department.
    5. Echeverría, Lucía & Gimenez-Nadal, J. Ignacio & Molina, José Alberto, 2021. "Carpooling: User profiles and well-being," Nülan. Deposited Documents 3568, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    6. Breno Tostes de Gomes Garcia & Diana Mery Messias Lopes & Ilton Curty Leal Junior & José Carlos Cesar Amorim & Marcelino Aurélio Vieira da Silva & Vanessa de Almeida Guimarães, 2019. "Analysis of the Performance of Transporting Soybeans from Mato Grosso for Export: A Case Study of the Tapajós-Teles Pires Waterway," Sustainability, MDPI, vol. 11(21), pages 1-26, November.
    7. Xie, Shaobo & Lang, Kun & Qi, Shanwei, 2020. "Aerodynamic-aware coordinated control of following speed and power distribution for hybrid electric trucks," Energy, Elsevier, vol. 209(C).
    8. Nikoleta Mikušová & Gabriel Fedorko & Vieroslav Molnár & Martina Hlatká & Rudolf Kampf & Veronika Sirková, 2021. "Possibility of a Solution of the Sustainability of Transport and Mobility with the Application of Discrete Computer Simulation—A Case Study," Sustainability, MDPI, vol. 13(17), pages 1-24, September.
    9. Strömberg, Helena & Karlsson, I.C. MariAnne & Rexfelt, Oskar, 2015. "Eco-driving: Drivers’ understanding of the concept and implications for future interventions," Transport Policy, Elsevier, vol. 39(C), pages 48-54.
    10. Nurul Hidayah Muslim & Ali Keyvanfar & Arezou Shafaghat & Mu’azu Mohammed Abdullahi & Majid Khorami, 2018. "Green Driver: Travel Behaviors Revisited on Fuel Saving and Less Emission," Sustainability, MDPI, vol. 10(2), pages 1-30, January.
    11. Frank Meissner & Armin Haas & Jochen Hinkel & Alexander Bisaro, 2020. "A typology for analysing mitigation and adaptation win-win strategies," Climatic Change, Springer, vol. 160(4), pages 539-564, June.
    12. Juliet Namukasa & Sheila Namagembe & Faridah Nakayima, 2020. "Fuel Efficiency Vehicle Adoption and Carbon Emissions in a Country Context," International Journal of Global Sustainability, Macrothink Institute, vol. 4(1), pages 1-21, December.
    13. Tianni Wang & Mark Ching-Pong Poo & Adolf K. Y. Ng & Zaili Yang, 2023. "Adapting to the Impacts Posed by Climate Change: Applying the Climate Change Risk Indicator (CCRI) Framework in a Multi-Modal Transport System," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    14. Montag, Josef, 2015. "The simple economics of motor vehicle pollution: A case for fuel tax," Energy Policy, Elsevier, vol. 85(C), pages 138-149.
    15. Aurélien Saussay, 2019. "Dynamic heterogeneity: rational habits and the heterogeneity of household responses to gasoline prices," Post-Print hal-03632598, HAL.
    16. Carvalho, Irene & Baier, Thomas & Simoes, Ricardo & Silva, Arlindo, 2012. "Reducing fuel consumption through modular vehicle architectures," Applied Energy, Elsevier, vol. 93(C), pages 556-563.
    17. Vaezipour, Atiyeh & Rakotonirainy, Andry & Haworth, Narelle & Delhomme, Patricia, 2018. "A simulator evaluation of in-vehicle human machine interfaces for eco-safe driving," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 696-713.
    18. Dong, Haoxuan & Zhuang, Weichao & Chen, Boli & Wang, Yan & Lu, Yanbo & Liu, Ying & Xu, Liwei & Yin, Guodong, 2022. "A comparative study of energy-efficient driving strategy for connected internal combustion engine and electric vehicles at signalized intersections," Applied Energy, Elsevier, vol. 310(C).
    19. Mostafa Shahen & Koji Kotani & Tatsuyoshi Saijo, 2020. "Does perspective-taking promote intergenerational sustainability?," Working Papers SDES-2020-12, Kochi University of Technology, School of Economics and Management, revised Sep 2020.
    20. Thomas Levermore & M. Necip Sahinkaya & Yahya Zweiri & Ben Neaves, 2016. "Real-Time Velocity Optimization to Minimize Energy Use in Passenger Vehicles," Energies, MDPI, vol. 10(1), pages 1-18, December.

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt0x73t2jw. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.