IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v2y2019i1p4-54d199567.html
   My bibliography  Save this article

One-Parameter Weibull-Type Distribution, Its Relative Entropy with Respect to Weibull and a Fractional Two-Parameter Exponential Distribution

Author

Listed:
  • Aris Alexopoulos

    (P.O. Box 123-AA, Adelaide, SA 5000, Australia)

Abstract

A new one-parameter distribution is presented with similar mathematical characteristics to the two parameter conventional Weibull. It has an estimator that only depends on the sample mean. The relative entropy with respect to the Weibull distribution is derived in order to examine the level of similarity between them. The performance of the new distribution is compared to the Weibull and in some cases the Gamma distribution using real data. In addition, the Exponential distribution is modified to include an extra parameter via a simple transformation using fractional mathematics. It will be shown that the modified version also exhibits Weibull characteristics for particular values of the second parameter.

Suggested Citation

  • Aris Alexopoulos, 2019. "One-Parameter Weibull-Type Distribution, Its Relative Entropy with Respect to Weibull and a Fractional Two-Parameter Exponential Distribution," Stats, MDPI, vol. 2(1), pages 1-21, January.
  • Handle: RePEc:gam:jstats:v:2:y:2019:i:1:p:4-54:d:199567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/2/1/4/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/2/1/4/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Camilo Carrillo & José Cidrás & Eloy Díaz-Dorado & Andrés Felipe Obando-Montaño, 2014. "An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain)," Energies, MDPI, vol. 7(4), pages 1-25, April.
    2. Young Lee & Byeong Park, 2006. "Estimation of Kullback–Leibler Divergence by Local Likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 327-340, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    2. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    3. Manzoor Ellahi & Ghulam Abbas & Irfan Khan & Paul Mario Koola & Mashood Nasir & Ali Raza & Umar Farooq, 2019. "Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review," Energies, MDPI, vol. 12(22), pages 1-30, November.
    4. Xu, Li & Ou, Yanxia & Cai, Jingjing & Wang, Jin & Fu, Yang & Bian, Xiaoyan, 2023. "Offshore wind speed assessment with statistical and attention-based neural network methods based on STL decomposition," Renewable Energy, Elsevier, vol. 216(C).
    5. Isabel Cristina Gil-García & María Socorro García-Cascales & Angel Molina-García, 2022. "Urban Wind: An Alternative for Sustainable Cities," Energies, MDPI, vol. 15(13), pages 1-20, June.
    6. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
    7. Gunnar Bårdsen & Stan Hurn & Kenneth Lindsay, 2019. "Modelling and forecasting wind drought," Working Paper Series 18219, Department of Economics, Norwegian University of Science and Technology.
    8. Denis E.K. Dzebre & Muyiwa S. Adaramola, 2019. "Impact of Selected Options in the Weather Research and Forecasting Model on Surface Wind Hindcasts in Coastal Ghana," Energies, MDPI, vol. 12(19), pages 1-16, September.
    9. KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
    10. Soukissian, Takvor H. & Karathanasi, Flora E., 2017. "On the selection of bivariate parametric models for wind data," Applied Energy, Elsevier, vol. 188(C), pages 280-304.
    11. Degiuli, Nastia & Runje, Biserka & Farkas, Andrea, 2017. "Statistical Analysis of Wind Speed for the Probability Evaluation of Cancelled Departure for Catamarans and Ferries," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2017), Dubrovnik, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Dubrovnik, Croatia, 7-9 September 2017, pages 340-350, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    12. Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
    13. Kim, SunOh & Hur, Jin, 2021. "Probabilistic power output model of wind generating resources for network congestion management," Renewable Energy, Elsevier, vol. 179(C), pages 1719-1726.
    14. Zhang, Yagang & Yang, Jingyun & Wang, Kangcheng & Wang, Zengping & Wang, Yinding, 2015. "Improved wind prediction based on the Lorenz system," Renewable Energy, Elsevier, vol. 81(C), pages 219-226.
    15. Hanifa Teimourian & Mahmoud Abubakar & Melih Yildiz & Amir Teimourian, 2022. "A Comparative Study on Wind Energy Assessment Distribution Models: A Case Study on Weibull Distribution," Energies, MDPI, vol. 15(15), pages 1-15, August.
    16. Yingyao Hu & Yang Liu & Jiaxiong Yao, 2022. "Revealing Unobservables by Deep Learning: Generative Element Extraction Networks (GEEN)," Papers 2210.01300, arXiv.org.
    17. Antonio Colmenar-Santos & Severo Campíez-Romero & Lorenzo Alfredo Enríquez-Garcia & Clara Pérez-Molina, 2014. "Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters," Energies, MDPI, vol. 7(11), pages 1-30, October.
    18. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    19. Mekalathur B Hemanth Kumar & Saravanan Balasubramaniyan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India," Energies, MDPI, vol. 12(11), pages 1-21, June.
    20. Sunoh Kim & Jin Hur, 2020. "Probabilistic Approaches to the Security Analysis of Smart Grid with High Wind Penetration: The Case of Jeju Island’s Power Grids," Energies, MDPI, vol. 13(21), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:2:y:2019:i:1:p:4-54:d:199567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.