IDEAS home Printed from https://ideas.repec.org/h/zbw/entr17/183794.html
   My bibliography  Save this book chapter

Statistical Analysis of Wind Speed for the Probability Evaluation of Cancelled Departure for Catamarans and Ferries

In: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Dubrovnik, Croatia, 7-9 September 2017

Author

Listed:
  • Degiuli, Nastia
  • Runje, Biserka
  • Farkas, Andrea

Abstract

Weather data bases are important in optimizing a range of economic activities, such as maritime traffic. In this paper, a statistical analysis of data has been carried out, which includes the interpretation of the results with an emphasis on the analysis of consequences for local population. The proposed procedure is supported by realistic data for wind speed and direction measured at meteorological station Split in the period from 2002 to 2011. Using available data, the annual as well as seasonal wind roses for the specified location are shown. Furthermore, wind speed data are approximated by the Weibull's probability distribution that enables estimating the probability of exceeding a particular wind speed, i.e. Beaufort number for this location. Thus, the probability of cancelled departure for catamarans, as well as ferries from the Split city port is determined for the annual level as well as for each season. The obtained results provide a more detailed insight into the important occurrence of cancelled departure of catamarans and ferries, significant for the lives of the islanders gravitating to Split.

Suggested Citation

  • Degiuli, Nastia & Runje, Biserka & Farkas, Andrea, 2017. "Statistical Analysis of Wind Speed for the Probability Evaluation of Cancelled Departure for Catamarans and Ferries," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2017), Dubrovnik, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Dubrovnik, Croatia, 7-9 September 2017, pages 340-350, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
  • Handle: RePEc:zbw:entr17:183794
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/183794/1/46-ENT-2017-Degiuli-paper-340-350.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Camilo Carrillo & José Cidrás & Eloy Díaz-Dorado & Andrés Felipe Obando-Montaño, 2014. "An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain)," Energies, MDPI, vol. 7(4), pages 1-25, April.
    2. Pishgar-Komleh, S.H. & Keyhani, A. & Sefeedpari, P., 2015. "Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 313-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manzoor Ellahi & Ghulam Abbas & Irfan Khan & Paul Mario Koola & Mashood Nasir & Ali Raza & Umar Farooq, 2019. "Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review," Energies, MDPI, vol. 12(22), pages 1-30, November.
    2. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    3. Mekalathur B Hemanth Kumar & Saravanan Balasubramaniyan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India," Energies, MDPI, vol. 12(11), pages 1-21, June.
    4. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    5. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Aris Alexopoulos, 2019. "One-Parameter Weibull-Type Distribution, Its Relative Entropy with Respect to Weibull and a Fractional Two-Parameter Exponential Distribution," Stats, MDPI, vol. 2(1), pages 1-21, January.
    7. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    8. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2020. "Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters," Renewable Energy, Elsevier, vol. 161(C), pages 1092-1109.
    9. Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev & Ekaterina Andriushchenko, 2021. "Comparison of Flux-Switching and Interior Permanent Magnet Synchronous Generators for Direct-Driven Wind Applications Based on Nelder–Mead Optimal Designing," Mathematics, MDPI, vol. 9(7), pages 1-16, March.
    10. Lidong Zhang & Qikai Li & Yuanjun Guo & Zhile Yang & Lei Zhang, 2018. "An Investigation of Wind Direction and Speed in a Featured Wind Farm Using Joint Probability Distribution Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    11. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    12. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    13. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
    14. Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev, 2020. "Optimal Design of Gearless Flux-Switching Generator with Ferrite Permanent Magnets," Mathematics, MDPI, vol. 8(2), pages 1-14, February.
    15. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    16. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    17. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    18. Rahim Zahedi & Alireza Zahedi & Abolfazl Ahmadi, 2022. "Strategic Study for Renewable Energy Policy, Optimizations and Sustainability in Iran," Sustainability, MDPI, vol. 14(4), pages 1-29, February.
    19. Alkhalidi, Mohamad A. & Al-Dabbous, Shoug Kh. & Neelamani, S. & Aldashti, Hassan A., 2019. "Wind energy potential at coastal and offshore locations in the state of Kuwait," Renewable Energy, Elsevier, vol. 135(C), pages 529-539.
    20. Xu, Li & Ou, Yanxia & Cai, Jingjing & Wang, Jin & Fu, Yang & Bian, Xiaoyan, 2023. "Offshore wind speed assessment with statistical and attention-based neural network methods based on STL decomposition," Renewable Energy, Elsevier, vol. 216(C).

    More about this item

    Keywords

    knowledge; information quality; applied statistics; probability estimation; wind; weibull distribution;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:entr17:183794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://www.entrenova.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.