IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5785-d440145.html
   My bibliography  Save this article

Probabilistic Approaches to the Security Analysis of Smart Grid with High Wind Penetration: The Case of Jeju Island’s Power Grids

Author

Listed:
  • Sunoh Kim

    (Department of Electrical Engineering, Sangmyung University, Seoul 03016, Korea)

  • Jin Hur

    (Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Korea)

Abstract

As the importance of renewable generating resources has grown around the world, South Korea is also trying to expand the proportion of renewable generating resources in the power generation sector. Among the various renewable energy sources, wind generating resources are emerging as a key alternative to conventional power generations in the electricity sector in Korea accounted for 17.7 GW of total capacity by 2030. As wind generating resources are gradually replacing traditional generating resources, the system security and reliability are negatively affected because of the variability, due to intermittent outputs. Therefore, existing power grids will need to be correctly re-measured to cover the large scale of renewable energy, including wind generation. To expand the grid, we must understand the characteristics of renewable energy and the impact of its adoption in the grid. In this paper, we analyze various characteristics of wind power generation, and then we propose a probabilistic power output modeling method to consider the uncertainty of wind power generation. For the probabilistic approach, Monte-Carlo simulation is used in the modeling method. The modeled wind power outputs can help planning for the reinforcement and expansion of power systems to expand the capacity for large-scale renewable energy in the future. To verify the proposed method, some case studies were performed using empirical data, and probabilistic power flow calculation was performed by integrating large-scale wind power generation to the Jeju Island power system. The probabilistic method proposed in this paper can efficiently plan power system expansion and play a key strategy of evaluating the security of the power system through the results of stochastic power flow calculation.

Suggested Citation

  • Sunoh Kim & Jin Hur, 2020. "Probabilistic Approaches to the Security Analysis of Smart Grid with High Wind Penetration: The Case of Jeju Island’s Power Grids," Energies, MDPI, vol. 13(21), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5785-:d:440145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5785/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2013. "State-of-the-art of transmission expansion planning: Comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 312-319.
    2. Camilo Carrillo & José Cidrás & Eloy Díaz-Dorado & Andrés Felipe Obando-Montaño, 2014. "An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain)," Energies, MDPI, vol. 7(4), pages 1-25, April.
    3. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    4. Oner, Yasemin & Ozcira, Selin & Bekiroglu, Nur & Senol, Ibrahim, 2013. "A comparative analysis of wind power density prediction methods for Çanakkale, Intepe region, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 491-502.
    5. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    6. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    7. Saleh, H. & Abou El-Azm Aly, A. & Abdel-Hady, S., 2012. "Assessment of different methods used to estimate Weibull distribution parameters for wind speed in Zafarana wind farm, Suez Gulf, Egypt," Energy, Elsevier, vol. 44(1), pages 710-719.
    8. Weisser, D, 2003. "A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function," Renewable Energy, Elsevier, vol. 28(11), pages 1803-1812.
    9. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyeokjin Son & Gilsoo Jang, 2023. "The Operation Strategy of the MIDC Systems for Optimizing Renewable Energy Integration of Jeju Power System," Energies, MDPI, vol. 16(15), pages 1-20, July.
    2. Young-Been Cho & Yun-Sung Cho & Jae-Gul Lee & Seung-Chan Oh, 2021. "Design and Implementation of Probabilistic Transient Stability Approach to Assess the High Penetration of Renewable Energy in Korea," Sustainability, MDPI, vol. 13(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    2. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    3. Mekalathur B Hemanth Kumar & Saravanan Balasubramaniyan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India," Energies, MDPI, vol. 12(11), pages 1-21, June.
    4. Arslan, Talha & Bulut, Y. Murat & Altın Yavuz, Arzu, 2014. "Comparative study of numerical methods for determining Weibull parameters for wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 820-825.
    5. Kwami Senam A. Sedzro & Adekunlé Akim Salami & Pierre Akuété Agbessi & Mawugno Koffi Kodjo, 2022. "Comparative Study of Wind Energy Potential Estimation Methods for Wind Sites in Togo and Benin (West Sub-Saharan Africa)," Energies, MDPI, vol. 15(22), pages 1-28, November.
    6. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    7. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    8. Guangyu Fan & Yanru Wang & Bo Yang & Chuanxiong Zhang & Bin Fu & Qianqian Qi, 2022. "Characteristics of Wind Resources and Post-Project Evaluation of Wind Farms in Coastal Areas of Zhejiang," Energies, MDPI, vol. 15(9), pages 1-18, May.
    9. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2020. "Evaluation of Wind Energy Potential Using an Optimum Approach based on Maximum Distance Metric," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    10. Katinas, Vladislovas & Marčiukaitis, Mantas & Gecevičius, Giedrius & Markevičius, Antanas, 2017. "Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania," Renewable Energy, Elsevier, vol. 113(C), pages 190-201.
    11. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    12. Muhammad Fitra Zambak & Catra Indra Cahyadi & Jufri Helmi & Tengku Machdhalie Sofie & Suwarno Suwarno, 2023. "Evaluation and Analysis of Wind Speed with the Weibull and Rayleigh Distribution Models for Energy Potential Using Three Models," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 427-432, March.
    13. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2018. "Wind resources and the levelized cost of wind generated electricity in the Caribbean islands of Trinidad and Tobago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2526-2540.
    14. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    15. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    16. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.
    17. Ma, Jinrui & Fouladirad, Mitra & Grall, Antoine, 2018. "Flexible wind speed generation model: Markov chain with an embedded diffusion process," Energy, Elsevier, vol. 164(C), pages 316-328.
    18. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    19. Liu, Feng Jiao & Chang, Tian Pau, 2011. "Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment," Energy, Elsevier, vol. 36(3), pages 1820-1826.
    20. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5785-:d:440145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.