IDEAS home Printed from https://ideas.repec.org/p/nst/samfok/18219.html
   My bibliography  Save this paper

Modelling and forecasting wind drought

Author

Listed:
  • Gunnar Bårdsen

    (Department of Economics, Norwegian University of Science and Technology)

  • Stan Hurn

    (School of Economics and Finance, QUT, Australia)

  • Kenneth Lindsay

    (Department of Mathematics, University of Glasgow, Scotland)

Abstract

The paper examines several simple dynamic probit models in terms of their usefulness in forecasting wind drought, defined as 5 or more hours of wind speed less than 3.5 m/sec during the busiest periods of the day for the demand for electricity. Dynamic probit models work well in terms of their ability to forecast and are robust by comparison with an approach based on modelling counts. There seems little advantage to moving to modelling counts unless there is added advantage to market participants in knowing the actual prediction for the number of hours of low wind. Future research should focus on the problem of identifying the first day in a series of days with slow winds, and the first day of reasonable wind after a spell of drought. Both the probit and count models could be improved in this regard.

Suggested Citation

  • Gunnar Bårdsen & Stan Hurn & Kenneth Lindsay, 2019. "Modelling and forecasting wind drought," Working Paper Series 18219, Department of Economics, Norwegian University of Science and Technology.
  • Handle: RePEc:nst:samfok:18219
    as

    Download full text from publisher

    File URL: http://www.svt.ntnu.no/ISO/WP/2019/6_19.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harding, Don & Pagan, Adrian, 2011. "An Econometric Analysis of Some Models for Constructed Binary Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 86-95.
    2. Camilo Carrillo & José Cidrás & Eloy Díaz-Dorado & Andrés Felipe Obando-Montaño, 2014. "An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain)," Energies, MDPI, vol. 7(4), pages 1-25, April.
    3. repec:qut:auncer:2012_5 is not listed on IDEAS
    4. Don Harding & Adrian Pagan, 2016. "The Econometric Analysis of Recurrent Events in Macroeconomics and Finance," Economics Books, Princeton University Press, edition 1, number 10744.
    5. Michael J. Dueker, 1997. "Strengthening the case for the yield curve as a predictor of U.S. recessions," Review, Federal Reserve Bank of St. Louis, issue Mar, pages 41-51.
    6. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    7. Benth, Fred Espen & Saltyte Benth, Jurate, 2009. "Dynamic pricing of wind futures," Energy Economics, Elsevier, vol. 31(1), pages 16-24, January.
    8. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2012. "Forecasting spikes in electricity prices," International Journal of Forecasting, Elsevier, vol. 28(2), pages 400-411.
    9. Bertrand Candelon & Elena-Ivona Dumitrescu & Christophe Hurlin, 2012. "How to evaluate an Early Warning System ?," Working Papers halshs-00450050, HAL.
    10. Bellégo, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Pagan & Don Harding, 2011. "Econometric Analysis and Prediction of Recurrent Events," NCER Working Paper Series 75, National Centre for Econometric Research.
    2. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    3. Candelon, Bertrand & Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2014. "Currency crisis early warning systems: Why they should be dynamic," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1016-1029.
    4. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    5. Bertrand Candelon & Elena-Ivona Dumitrescu & Christophe Hurlin & Franz C. Palm, 2013. "Multivariate Dynamic Probit Models: An Application to Financial Crises Mutation," Advances in Econometrics, in: VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims, volume 32, pages 395-427, Emerald Group Publishing Limited.
    6. Bertrand Candelon & Elena-Ivona DUMITRESCU & Christophe HURLIN & Franz C. PALM, 2011. "Modelling Financial Crises Mutation," LEO Working Papers / DR LEO 1238, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    7. Manner, Hans & Türk, Dennis & Eichler, Michael, 2016. "Modeling and forecasting multivariate electricity price spikes," Energy Economics, Elsevier, vol. 60(C), pages 255-265.
    8. Ralf Fendel & Nicola Mai & Oliver Mohr, 2021. "Recession probabilities for the Eurozone at the zero lower bound: Challenges to the term spread and rise of alternatives," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1000-1026, September.
    9. Ahmed, Jameel & Straetmans, Stefan, 2015. "Predicting exchange rate cycles utilizing risk factors," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 112-130.
    10. Kajal Lahiri & Cheng Yang, 2023. "A tale of two recession-derivative indicators," Empirical Economics, Springer, vol. 65(2), pages 925-947, August.
    11. A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
    12. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," AMSE Working Papers 2013, Aix-Marseille School of Economics, France.
    13. García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
    14. Harding, Don & Pagan, Adrian, 2011. "An Econometric Analysis of Some Models for Constructed Binary Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 86-95.
    15. Marco Gallegati, 2019. "A system for dating long wave phases in economic development," Journal of Evolutionary Economics, Springer, vol. 29(3), pages 803-822, July.
    16. Roy, Saktinil & Kemme, David M., 2012. "Causes of banking crises: Deregulation, credit booms and asset bubbles, then and now," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 270-294.
    17. Franck Sédillot, 2001. "La pente des taux contient-elle de l'information sur l'activité économique future ?," Economie & Prévision, La Documentation Française, vol. 147(1), pages 141-157.
    18. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
    19. Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
    20. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G00 - Financial Economics - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nst:samfok:18219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Larsen (email available below). General contact details of provider: https://edirc.repec.org/data/isontno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.