IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i3p87-d254934.html
   My bibliography  Save this article

On the Laplace Transforms of the First Hitting Times for Drawdowns and Drawups of Diffusion-Type Processes

Author

Listed:
  • Pavel V. Gapeev

    (Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, UK)

  • Neofytos Rodosthenous

    (School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK)

  • V. L. Raju Chinthalapati

    (Southampton Business School, University of Southampton, Southampton SO17 1BJ, UK)

Abstract

We obtain closed-form expressions for the value of the joint Laplace transform of the running maximum and minimum of a diffusion-type process stopped at the first time at which the associated drawdown or drawup process hits a constant level before an independent exponential random time. It is assumed that the coefficients of the diffusion-type process are regular functions of the current values of its running maximum and minimum. The proof is based on the solution to the equivalent inhomogeneous ordinary differential boundary-value problem and the application of the normal-reflection conditions for the value function at the edges of the state space of the resulting three-dimensional Markov process. The result is related to the computation of probability characteristics of the take-profit and stop-loss values of a market trader during a given time period.

Suggested Citation

  • Pavel V. Gapeev & Neofytos Rodosthenous & V. L. Raju Chinthalapati, 2019. "On the Laplace Transforms of the First Hitting Times for Drawdowns and Drawups of Diffusion-Type Processes," Risks, MDPI, vol. 7(3), pages 1-15, August.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:3:p:87-:d:254934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/3/87/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/3/87/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raphaël Douady & A.N. Shiryaev & Marc Yor, 2000. "On Probability Characteristics of "Downfalls" in a Standard Brownian Motion," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01477104, HAL.
    2. Ankush Agarwal & Sandeep Juneja & Ronnie Sircar, 2016. "American options under stochastic volatility: control variates, maturity randomization & multiscale asymptotics," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 17-30, January.
    3. Forde, Martin, 2011. "A diffusion-type process with a given joint law for the terminal level and supremum at an independent exponential time," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2802-2817.
    4. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    5. Pospisil, Libor & Vecer, Jan & Hadjiliadis, Olympia, 2009. "Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2563-2578, August.
    6. Peskir, Goran, 2012. "Optimal detection of a hidden target: The median rule," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2249-2263.
    7. Gapeev, Pavel V. & Rodosthenous, Neofytos, 2016. "Perpetual American options in diffusion-type models with running maxima and drawdowns," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2038-2061.
    8. Kristoffer Glover & Hardy Hulley & Goran Peskir, 2011. "Three-Dimensional Brownian Motion and the Golden Ratio Rule," Research Paper Series 295, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Edward P. K. Tsang & Ran Tao & Antoaneta Serguieva & Shuai Ma, 2017. "Profiling high-frequency equity price movements in directional changes," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 217-225, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yakun Liu & Jingchao Li & Jieming Zhou & Yingchun Deng, 2024. "Optimal Investment and Reinsurance to Maximize the Probability of Drawup Before Drawdown," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-34, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gapeev, Pavel V. & Rodosthenous, Neofytos & Chinthalapati, V.L Raju, 2019. "On the Laplace transforms of the first hitting times for drawdowns and drawups of diffusion-type processes," LSE Research Online Documents on Economics 101272, London School of Economics and Political Science, LSE Library.
    2. Gapeev, Pavel V. & Rodosthenous, Neofytos, 2016. "Perpetual American options in diffusion-type models with running maxima and drawdowns," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2038-2061.
    3. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    4. Gapeev, Pavel V., 2020. "Optimal stopping problems for running minima with positive discounting rates," LSE Research Online Documents on Economics 105849, London School of Economics and Political Science, LSE Library.
    5. Gapeev, Pavel V., 2020. "Optimal stopping problems for running minima with positive discounting rates," Statistics & Probability Letters, Elsevier, vol. 167(C).
    6. T. De Angelis & G. Peskir, 2016. "Optimal prediction of resistance and support levels," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 465-483, November.
    7. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    8. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    9. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    10. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    11. Pavel V. Gapeev, 2022. "Perpetual American Double Lookback Options on Drawdowns and Drawups with Floating Strikes," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 749-788, June.
    12. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    13. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    14. Baurdoux, Erik J. & Pedraza, José M., 2023. "Predicting the last zero before an exponential time of a spectrally negative Lévy process," LSE Research Online Documents on Economics 119290, London School of Economics and Political Science, LSE Library.
    15. Zhenyu Cui & Duy Nguyen, 2018. "Magnitude and Speed of Consecutive Market Crashes in a Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 117-135, March.
    16. Mijatović, Aleksandar & Pistorius, Martijn R., 2012. "On the drawdown of completely asymmetric Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3812-3836.
    17. Gapeev, Pavel V. & Li, Libo, 2022. "Perpetual American standard and lookback options with event risk and asymmetric information," LSE Research Online Documents on Economics 114940, London School of Economics and Political Science, LSE Library.
    18. Junkee Jeon & Jeonggyu Huh & Kyunghyun Park, 2020. "An Analytic Approximation for Valuation of the American Option Under the Heston Model in Two Regimes," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 499-528, August.
    19. David Landriault & Bin Li & Hongzhong Zhang, 2017. "A Unified Approach for Drawdown (Drawup) of Time-Homogeneous Markov Processes," Papers 1702.07786, arXiv.org.
    20. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:3:p:87-:d:254934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.