IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v56y2020i2d10.1007_s10614-019-09939-2.html
   My bibliography  Save this article

An Analytic Approximation for Valuation of the American Option Under the Heston Model in Two Regimes

Author

Listed:
  • Junkee Jeon

    (Kyung Hee University)

  • Jeonggyu Huh

    (Korea Institute for Advanced Study)

  • Kyunghyun Park

    (Seoul National University)

Abstract

This paper studies the valuation of the American call-option under the Heston model in two regimes, i.e., fast-mean reverting and slow-mean reverting regimes. In the case of the European-style option under the Heston model, a closed-form solution for one-dimensional integration can be derived. However, in the case of the American-style option, it is impossible to obtain a general analytic integral equation for the price. By using singular and regular perturbation techniques introduced by Fouque et al. (Multiscale stochastic volatility for equity, interest-rate and credit derivative, Cambridge University Press, Cambridge, 2011) and the maturity randomization method introduced by Carr (Rev Financ Stud 11:597–626, 1998), we provide an approximate analytic solution of the American call-option and describe a numerical scheme to evaluate the value of this solution. Numerical results show that our method is accurate and efficient compared to the finite-difference method and the Longstaff and Schwartz (Rev Financ Stud 14(1):113–147, 2001) method.

Suggested Citation

  • Junkee Jeon & Jeonggyu Huh & Kyunghyun Park, 2020. "An Analytic Approximation for Valuation of the American Option Under the Heston Model in Two Regimes," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 499-528, August.
  • Handle: RePEc:kap:compec:v:56:y:2020:i:2:d:10.1007_s10614-019-09939-2
    DOI: 10.1007/s10614-019-09939-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-019-09939-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-019-09939-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Jia-Hau Guo & Mao-Wei Hung, 2007. "A Note on the Discontinuity Problem in Heston's Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 339-345.
    3. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584, November.
    4. Schroder, Mark, 1999. "Changes of Numeraire for Pricing Futures, Forwards, and Options," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1143-1163.
    5. Elias Tzavalis & Shijun Wang, 2003. "Pricing American Options under Stochastic Volatility: A New Method Using Chebyshev Polynomials to Approximate the Early Exercise Boundary," Working Papers 488, Queen Mary University of London, School of Economics and Finance.
    6. Andrew Ziogas & Carl Chiarella, 2005. "Pricing American Options under Stochastic Volatility," Computing in Economics and Finance 2005 77, Society for Computational Economics.
    7. Arun Chockalingam & Kumar Muthuraman, 2011. "American Options Under Stochastic Volatility," Operations Research, INFORMS, vol. 59(4), pages 793-809, August.
    8. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    9. Ankush Agarwal & Sandeep Juneja & Ronnie Sircar, 2016. "American options under stochastic volatility: control variates, maturity randomization & multiscale asymptotics," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 17-30, January.
    10. Samuel Hikspoors & Sebastian Jaimungal, 2008. "Asymptotic Pricing of Commodity Derivatives using Stochastic Volatility Spot Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 449-477.
    11. Rambeerich, N. & Tangman, D.Y. & Lollchund, M.R. & Bhuruth, M., 2013. "High-order computational methods for option valuation under multifactor models," European Journal of Operational Research, Elsevier, vol. 224(1), pages 219-226.
    12. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    13. Jean-Pierre Fouque & Chuan-Hsiang Han, 2003. "Pricing Asian options with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(5), pages 353-362.
    14. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    15. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    16. Nigel Clarke & Kevin Parrott, 1999. "Multigrid for American option pricing with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 177-195.
    17. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsvetelin S. Zaevski, 2024. "Quadratic American Strangle Options in Light of Two-Sided Optimal Stopping Problems," Mathematics, MDPI, vol. 12(10), pages 1-27, May.
    2. Zaevski, Tsvetelin S., 2022. "Pricing discounted American capped options," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    4. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    5. Shen, Jinye & Huang, Weizhang & Ma, Jingtang, 2024. "An efficient and provable sequential quadratic programming method for American and swing option pricing," European Journal of Operational Research, Elsevier, vol. 316(1), pages 19-35.
    6. Ma, Jingtang & Yang, Wensheng & Cui, Zhenyu, 2021. "CTMC integral equation method for American options under stochastic local volatility models," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    7. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    8. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    9. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    10. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    11. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    12. Maya Briani & Lucia Caramellino & Antonino Zanette, 2017. "A hybrid approach for the implementation of the Heston model," Post-Print hal-00916440, HAL.
    13. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    14. Christian Bayer & Ra'ul Tempone & Soren Wolfers, 2018. "Pricing American Options by Exercise Rate Optimization," Papers 1809.07300, arXiv.org, revised Aug 2019.
    15. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    16. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    17. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    18. Minting Zhu & Mancang Wang & Jingyu Wu, 2024. "An Option Pricing Formula for Active Hedging Under Logarithmic Investment Strategy," Mathematics, MDPI, vol. 12(23), pages 1-21, December.
    19. Yacin Jerbi, 2016. "Early exercise premium method for pricing American options under the J-model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-26, December.
    20. Maya Briani & Lucia Caramellino & Antonino Zanette, 2013. "A hybrid approach for the implementation of the Heston model," Papers 1307.7178, arXiv.org, revised Sep 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:56:y:2020:i:2:d:10.1007_s10614-019-09939-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.