IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v53y2013i3p840-850.html
   My bibliography  Save this article

Stochastic modeling and fair valuation of drawdown insurance

Author

Listed:
  • Zhang, Hongzhong
  • Leung, Tim
  • Hadjiliadis, Olympia

Abstract

This paper studies the stochastic modeling of market drawdown events and the fair valuation of insurance contracts based on drawdowns. We model the asset drawdown process as the current relative distance from the historical maximum of the asset value. We first consider a vanilla insurance contract whereby the protection buyer pays a constant premium over time to insure against a drawdown of a pre-specified level. This leads to the analysis of the conditional Laplace transform of the drawdown time, which will serve as the building block for drawdown insurance with early cancellation or drawup contingency. For the cancellable drawdown insurance, we derive the investor’s optimal cancellation timing in terms of a two-sided first passage time of the underlying drawdown process. Our model can also be applied to insure against a drawdown by a defaultable stock. We provide analytic formulas for the fair premium and illustrate the impact of default risk.

Suggested Citation

  • Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
  • Handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:840-850
    DOI: 10.1016/j.insmatheco.2013.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713001601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vadim Linetsky, 2006. "Pricing Equity Derivatives Subject To Bankruptcy," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 255-282, April.
    2. Cheung, Ka Chun & Yang, Hailiang, 2005. "Optimal stopping behavior of equity-linked investment products with regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 599-614, December.
    3. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    4. Raphaël Douady & A.N. Shiryaev & Marc Yor, 2000. "On Probability Characteristics of "Downfalls" in a Standard Brownian Motion," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01477104, HAL.
    5. Olympia Hadjiliadis & Jan Vecer, 2006. "Drawdowns preceding rallies in the Brownian motion model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 403-409.
    6. Vikas Agarwal & Naveen D. Daniel & Narayan Y. Naik, 2009. "Role of Managerial Incentives and Discretion in Hedge Fund Performance," Journal of Finance, American Finance Association, vol. 64(5), pages 2221-2256, October.
    7. William N. Goetzmann & Jonathan E. Ingersoll & Stephen A. Ross, 2003. "High‐Water Marks and Hedge Fund Management Contracts," Journal of Finance, American Finance Association, vol. 58(4), pages 1685-1718, August.
    8. Libor Pospisil & Jan Vecer, 2010. "Portfolio sensitivity to changes in the maximum and the maximum drawdown," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 617-627.
    9. Riccardo Rebonato & Valerio Gaspari, 2006. "Analysis of drawdowns and drawups in the US$ interest-rate market," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 297-326.
    10. Johansen, Anders, 2003. "Characterization of large price variations in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 157-166.
    11. Hongzhong Zhang & Olympia Hadjiliadis, 2010. "Drawdowns and Rallies in a Finite Time-horizon," Methodology and Computing in Applied Probability, Springer, vol. 12(2), pages 293-308, June.
    12. Pospisil, Libor & Vecer, Jan & Hadjiliadis, Olympia, 2009. "Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2563-2578, August.
    13. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    14. Moore, Kristen S., 2009. "Optimal surrender strategies for equity-indexed annuity investors," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 1-18, February.
    15. Kristen Moore & Virginia Young, 2005. "Optimal Design of a Perpetual Equity-Indexed Annuity," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(1), pages 57-72.
    16. Agarwal, Vikas & Daniel, Naveen D. & Naik, Narayan Y., 2009. "Role of managerial incentives and discretion in hedge fund performance," CFR Working Papers 04-04, University of Cologne, Centre for Financial Research (CFR).
    17. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    18. Peter Carr & Hongzhong Zhang & Olympia Hadjiliadis, 2011. "Maximum Drawdown Insurance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1195-1230.
    19. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276, July.
    20. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, October.
    2. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    3. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    4. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Fair valuation of L\'evy-type drawdown-drawup contracts with general insured and penalty functions," Papers 1712.04418, arXiv.org, revised Feb 2018.
    5. Li, Shu & Zhou, Xiaowen, 2022. "The Parisian and ultimate drawdowns of Lévy insurance models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 140-160.
    6. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    7. Long Bai & Peng Liu, 2019. "Drawdown and Drawup for Fractional Brownian Motion with Trend," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1581-1612, September.
    8. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Pricing insurance drawdown-type contracts with underlying L\'evy assets," Papers 1701.01891, arXiv.org, revised Oct 2017.
    9. Baurdoux, E.J. & Palmowski, Z. & Pistorius, M.R., 2017. "On future drawdowns of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2679-2698.
    10. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    11. Palmowski, Z. & Surya, B.A., 2020. "Optimal valuation of American callable credit default swaps under drawdown of Lévy insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 168-177.
    12. Zbigniew Palmowski & Joanna Tumilewicz, 2018. "Drawdown insurance contracts for the Lévy-type model with the phase-type jump distribution and general reward function," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 51, pages 255-270.
    13. Baurdoux, Erik J. & Palmowski, Z & Pistorius, Martijn R, 2017. "On future drawdowns of Lévy processes," LSE Research Online Documents on Economics 84342, London School of Economics and Political Science, LSE Library.
    14. Landriault, David & Li, Bin & Li, Shu, 2018. "Expected utility of the drawdown-based regime-switching risk model with state-dependent termination," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 137-147.
    15. Landriault, David & Li, Bin & Li, Shu, 2015. "Analysis of a drawdown-based regime-switching Lévy insurance model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 98-107.
    16. Palmowski, Zbigniew & Tumilewicz, Joanna, 2018. "Pricing insurance drawdown-type contracts with underlying Lévy assets," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 1-14.
    17. David Landriault & Bin Li & Hongzhong Zhang, 2017. "A Unified Approach for Drawdown (Drawup) of Time-Homogeneous Markov Processes," Papers 1702.07786, arXiv.org.
    18. Zbigniew Palmowski & Budhi Surya, 2019. "Optimal valuation of American callable credit default swaps under drawdown of L\'evy insurance risk process," Papers 1904.10063, arXiv.org, revised Apr 2020.
    19. Damiano Rossello & Silvestro Lo Cascio, 2021. "A refined measure of conditional maximum drawdown," Risk Management, Palgrave Macmillan, vol. 23(4), pages 301-321, December.
    20. Landriault, David & Li, Bin & Wong, Jeff T.Y. & Xu, Di, 2018. "Poissonian potential measures for Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 152-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, October.
    2. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    3. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    4. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    5. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    6. Zhenyu Cui & Duy Nguyen, 2018. "Magnitude and Speed of Consecutive Market Crashes in a Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 117-135, March.
    7. Vladimir Petrov & Anton Golub & Richard Olsen, 2019. "Instantaneous Volatility Seasonality of High-Frequency Markets in Directional-Change Intrinsic Time," JRFM, MDPI, vol. 12(2), pages 1-31, April.
    8. Mijatović, Aleksandar & Pistorius, Martijn R., 2012. "On the drawdown of completely asymmetric Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3812-3836.
    9. David Landriault & Bin Li & Hongzhong Zhang, 2017. "A Unified Approach for Drawdown (Drawup) of Time-Homogeneous Markov Processes," Papers 1702.07786, arXiv.org.
    10. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Fair valuation of L\'evy-type drawdown-drawup contracts with general insured and penalty functions," Papers 1712.04418, arXiv.org, revised Feb 2018.
    11. Tommaso Proietti, 2024. "Ups and (Draw)Downs," CEIS Research Paper 576, Tor Vergata University, CEIS, revised 03 May 2024.
    12. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    13. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Pricing insurance drawdown-type contracts with underlying L\'evy assets," Papers 1701.01891, arXiv.org, revised Oct 2017.
    14. Ben-David, Itzhak & Birru, Justin & Rossi, Andrea, 2020. "The Performance of Hedge Fund Performance Fees," Working Paper Series 2020-14, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    15. Damiano Rossello & Silvestro Lo Cascio, 2021. "A refined measure of conditional maximum drawdown," Risk Management, Palgrave Macmillan, vol. 23(4), pages 301-321, December.
    16. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    17. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.
    18. Junbeom Lee & Xiang Yu & Chao Zhou, 2019. "Lifetime Ruin under High-watermark Fees and Drift Uncertainty," Papers 1909.01121, arXiv.org, revised Oct 2020.
    19. Lan, Yingcong & Wang, Neng & Yang, Jinqiang, 2013. "The economics of hedge funds," Journal of Financial Economics, Elsevier, vol. 110(2), pages 300-323.
    20. Palmowski, Zbigniew & Tumilewicz, Joanna, 2018. "Pricing insurance drawdown-type contracts with underlying Lévy assets," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 1-14.

    More about this item

    Keywords

    Drawdown insurance; Early cancellation; Optimal stopping; Default risk;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G01 - Financial Economics - - General - - - Financial Crises
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:840-850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.