IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/295.html
   My bibliography  Save this paper

Three-Dimensional Brownian Motion and the Golden Ratio Rule

Author

Abstract

Let X =(Xt)t=0 be a transient diffusion processin (0,8) with the diffusion coeffcient s> 0 and the scale function L such that Xt ?8 as t ?8 ,let It denote its running minimum for t = 0, and let ? denote the time of its ultimate minimum I8 .Setting c(i,x)=1-2L(x)/L(i) we show that the stopping time minimises E(|? - t|- ?) over all stopping times t of X (with finite mean) where the optimal boundary f* can be characterised as the minimal solution to staying strictly above the curve h(i)= L-1(L(i)/2) for i > 0. In particular, when X is the radial part of three-dimensional Brownian motion, we find that where ? =(1+v5)/2=1.61 ... is the golden ratio. The derived results are applied to problems of optimal trading in the presence of bubbles where we show that the golden ratio rule offers a rigourous optimality argument for the choice of the well known golden retracement in technical analysis of asset prices.

Suggested Citation

  • Kristoffer Glover & Hardy Hulley & Goran Peskir, 2011. "Three-Dimensional Brownian Motion and the Golden Ratio Rule," Research Paper Series 295, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:295
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp295.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    2. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(4), pages 533-554, November.
    3. M. F. M. Osborne, 1959. "Brownian Motion in the Stock Market," Operations Research, INFORMS, vol. 7(2), pages 145-173, April.
    4. Steven L. Heston & Mark Loewenstein & Gregory A. Willard, 2007. "Options and Bubbles," The Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 359-390.
    5. A. M. G. Cox & David Hobson & Jan Ob{l}'oj, 2007. "Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping," Papers math/0702173, arXiv.org, revised Nov 2008.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel V. Gapeev, 2022. "Perpetual American Double Lookback Options on Drawdowns and Drawups with Floating Strikes," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 749-788, June.
    2. Pavel V. Gapeev & Neofytos Rodosthenous & V. L. Raju Chinthalapati, 2019. "On the Laplace Transforms of the First Hitting Times for Drawdowns and Drawups of Diffusion-Type Processes," Risks, MDPI, vol. 7(3), pages 1-15, August.
    3. Gapeev, Pavel V., 2020. "Optimal stopping problems for running minima with positive discounting rates," LSE Research Online Documents on Economics 105849, London School of Economics and Political Science, LSE Library.
    4. Pavel V. Gapeev & Peter M. Kort & Maria N. Lavrutich & Jacco J. J. Thijssen, 2022. "Optimal Double Stopping Problems for Maxima and Minima of Geometric Brownian Motions," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 789-813, June.
    5. Thomas Kruse & Philipp Strack, 2019. "An Inverse Optimal Stopping Problem for Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 423-439, May.
    6. Gapeev, Pavel V. & Rodosthenous, Neofytos & Chinthalapati, V.L Raju, 2019. "On the Laplace transforms of the first hitting times for drawdowns and drawups of diffusion-type processes," LSE Research Online Documents on Economics 101272, London School of Economics and Political Science, LSE Library.
    7. T. De Angelis & G. Peskir, 2016. "Optimal prediction of resistance and support levels," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 465-483, November.
    8. Gapeev, Pavel V. & Li, Libo, 2022. "Perpetual American standard and lookback options with event risk and asymmetric information," LSE Research Online Documents on Economics 114940, London School of Economics and Political Science, LSE Library.
    9. Baurdoux, Erik J. & Pedraza, José M., 2023. "Predicting the last zero before an exponential time of a spectrally negative Lévy process," LSE Research Online Documents on Economics 119290, London School of Economics and Political Science, LSE Library.
    10. Gapeev, Pavel V. & Rodosthenous, Neofytos, 2016. "Perpetual American options in diffusion-type models with running maxima and drawdowns," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2038-2061.
    11. Gapeev, Pavel V., 2020. "Optimal stopping problems for running minima with positive discounting rates," Statistics & Probability Letters, Elsevier, vol. 167(C).
    12. Gündüz, Güngör & Gündüz, Yalin, 2016. "A thermodynamical view on asset pricing," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 310-327.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Michael Schatz & Didier Sornette, 2017. "Uniform Integrability of a Single Jump Local Martingale with State-Dependent Characteristics," Swiss Finance Institute Research Paper Series 17-21, Swiss Finance Institute.
    3. R. Guy Thomas, 2023. "Long-term option pricing with a lower reflecting barrier," Papers 2302.05808, arXiv.org.
    4. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
    5. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25, July-Dece.
    6. Martin Herdegen & Martin Schweizer, 2016. "Strong Bubbles And Strict Local Martingales," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-44, June.
    7. Li, Minqiang, 2010. "A damped diffusion framework for financial modeling and closed-form maximum likelihood estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 132-157, February.
    8. Leif Andersen, 2011. "Option pricing with quadratic volatility: a revisit," Finance and Stochastics, Springer, vol. 15(2), pages 191-219, June.
    9. Martin HERDEGEN & Martin SCHWEIZER, 2015. "Economics-Based Financial Bubbles (and Why They Imply Strict Local Martingales)," Swiss Finance Institute Research Paper Series 15-05, Swiss Finance Institute.
    10. Shane Miller & Eckhard Platen, 2010. "Real-World Pricing for a Modified Constant Elasticity of Variance Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(2), pages 147-175.
    11. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    12. José Carlos Dias & João Pedro Vidal Nunes & Aricson Cruz, 2020. "A note on options and bubbles under the CEV model: implications for pricing and hedging," Review of Derivatives Research, Springer, vol. 23(3), pages 249-272, October.
    13. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009, January-A.
    14. Martin Herdegen & Martin Schweizer, 2018. "Semi‐efficient valuations and put‐call parity," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 1061-1106, October.
    15. Jia‐Hau Guo & Lung‐Fu Chang, 2020. "Repeated Richardson extrapolation and static hedging of barrier options under the CEV model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 974-988, June.
    16. Martin HERDEGEN & Martin SCHWEIZER, 2016. "Economically Consistent Valuations and Put-Call Parity," Swiss Finance Institute Research Paper Series 16-02, Swiss Finance Institute.
    17. Dirk Veestraeten, 2017. "On the multiplicity of option prices under CEV with positive elasticity of variance," Review of Derivatives Research, Springer, vol. 20(1), pages 1-13, April.
    18. Petteri Piiroinen & Lassi Roininen & Tobias Schoden & Martin Simon, 2018. "Asset Price Bubbles: An Option-based Indicator," Papers 1805.07403, arXiv.org, revised Jul 2018.
    19. Dias, José Carlos & Nunes, João Pedro Vidal & da Silva, Fernando Correia, 2024. "Finite maturity caps and floors on continuous flows under the constant elasticity of variance process," European Journal of Operational Research, Elsevier, vol. 316(1), pages 361-385.
    20. Aleksandar Mijatovic & Mikhail Urusov, 2009. "On the Martingale Property of Certain Local Martingales," Papers 0905.3701, arXiv.org, revised Oct 2010.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.