IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i11p3812-3836.html
   My bibliography  Save this article

On the drawdown of completely asymmetric Lévy processes

Author

Listed:
  • Mijatović, Aleksandar
  • Pistorius, Martijn R.

Abstract

The drawdown process Y of a completely asymmetric Lévy process X is equal to X reflected at its running supremum X¯: Y=X¯−X. In this paper we explicitly express in terms of the scale function and the Lévy measure of X the law of the sextuple of the first-passage time of Y over the level a>0, the time G¯τa of the last supremum of X prior to τa, the infimum X¯τa and supremum X¯τa of X at τa and the undershoot a−Yτa− and overshoot Yτa−a of Y at τa. As application we obtain explicit expressions for the laws of a number of functionals of drawdowns and rallies in a completely asymmetric exponential Lévy model.

Suggested Citation

  • Mijatović, Aleksandar & Pistorius, Martijn R., 2012. "On the drawdown of completely asymmetric Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3812-3836.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:11:p:3812-3836
    DOI: 10.1016/j.spa.2012.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912001408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    2. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    3. Raphaël Douady & A.N. Shiryaev & Marc Yor, 2000. "On Probability Characteristics of "Downfalls" in a Standard Brownian Motion," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01477104, HAL.
    4. Olympia Hadjiliadis & Jan Vecer, 2006. "Drawdowns preceding rallies in the Brownian motion model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 403-409.
    5. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    6. Foort Hamelink & Martin Hoesli, 2004. "Maximum drawdown and the allocation to real estate," Journal of Property Research, Taylor & Francis Journals, vol. 21(1), pages 5-29, January.
    7. Hongzhong Zhang & Olympia Hadjiliadis, 2010. "Drawdowns and Rallies in a Finite Time-horizon," Methodology and Computing in Applied Probability, Springer, vol. 12(2), pages 293-308, June.
    8. Pospisil, Libor & Vecer, Jan & Hadjiliadis, Olympia, 2009. "Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2563-2578, August.
    9. Joseph Abate & Ward Whitt, 1995. "Numerical Inversion of Laplace Transforms of Probability Distributions," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 36-43, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mijatović, Aleksandar & Vidmar, Matija & Jacka, Saul, 2015. "Markov chain approximations to scale functions of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3932-3957.
    2. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    3. Ceren Vardar-Acar & Mine Çağlar & Florin Avram, 2021. "Maximum Drawdown and Drawdown Duration of Spectrally Negative Lévy Processes Decomposed at Extremes," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1486-1505, September.
    4. Li, Shu & Zhou, Xiaowen, 2022. "The Parisian and ultimate drawdowns of Lévy insurance models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 140-160.
    5. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    6. Salminen, Paavo & Vallois, Pierre, 2020. "On the maximum increase and decrease of one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5592-5604.
    7. Huang, Lu-Jing & Kim, Kyung-Youn & Mao, Yong-Hua & Wang, Tao, 2022. "Variational formulas for the exit time of Hunt processes generated by semi-Dirichlet forms," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 380-399.
    8. Landriault, David & Li, Bin & Li, Shu, 2015. "Analysis of a drawdown-based regime-switching Lévy insurance model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 98-107.
    9. Mijatović, Aleksandar & Pistorius, Martijn, 2015. "Buffer-overflows: Joint limit laws of undershoots and overshoots of reflected processes," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2937-2954.
    10. Palmowski, Zbigniew & Tumilewicz, Joanna, 2018. "Pricing insurance drawdown-type contracts with underlying Lévy assets," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 1-14.
    11. David Landriault & Bin Li & Hongzhong Zhang, 2017. "A Unified Approach for Drawdown (Drawup) of Time-Homogeneous Markov Processes," Papers 1702.07786, arXiv.org.
    12. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    13. Gapeev, Pavel V. & Stoev, Yavor I., 2017. "On the Laplace transforms of the first exit times in one-dimensional non-affine jump–diffusion models," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 152-162.
    14. Gapeev, Pavel V. & Rodosthenous, Neofytos, 2016. "Perpetual American options in diffusion-type models with running maxima and drawdowns," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2038-2061.
    15. Baurdoux, E.J. & Palmowski, Z. & Pistorius, M.R., 2017. "On future drawdowns of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2679-2698.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    2. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    3. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    4. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    5. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    6. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    7. Zhenyu Cui & Duy Nguyen, 2018. "Magnitude and Speed of Consecutive Market Crashes in a Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 117-135, March.
    8. Aleksandar Mijatovic & Martijn R. Pistorius, 2011. "On the drawdown of completely asymmetric Levy processes," Papers 1103.1460, arXiv.org, revised Sep 2012.
    9. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    10. Zhenyu Cui, 2014. "Omega risk model with tax," Papers 1403.7680, arXiv.org.
    11. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    12. Muneer Shaik & S. Maheswaran, 2019. "Robust Volatility Estimation with and Without the Drift Parameter," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 57-91, March.
    13. Vladimir Petrov & Anton Golub & Richard Olsen, 2019. "Instantaneous Volatility Seasonality of High-Frequency Markets in Directional-Change Intrinsic Time," JRFM, MDPI, vol. 12(2), pages 1-31, April.
    14. Hongzhong Zhang & Olympia Hadjiliadis, 2010. "Drawdowns and Rallies in a Finite Time-horizon," Methodology and Computing in Applied Probability, Springer, vol. 12(2), pages 293-308, June.
    15. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.
    16. David Landriault & Bin Li & Hongzhong Zhang, 2017. "A Unified Approach for Drawdown (Drawup) of Time-Homogeneous Markov Processes," Papers 1702.07786, arXiv.org.
    17. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    18. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
    19. Kyo Yamamoto & Seisho Sato & Akihiko Takahashi, 2009. "Probability Distribution and Option Pricing for Drawdown in a Stochastic Volatility Environment," CIRJE F-Series CIRJE-F-625, CIRJE, Faculty of Economics, University of Tokyo.
    20. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:11:p:3812-3836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.