IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/53697.html
   My bibliography  Save this paper

Multiobjective optimization for the asset allocation of European nonlife insurance companies

Author

Listed:
  • Jarraya, Bilel
  • Bouri, Abdelfettah

Abstract

An optimal asset allocation is crucial for non-life insurance companies. The most previous studies focused on this topic use a mono-objective technique optimization. This technique usually allows the maximization of shareholders’ expected utility. As non-life insurance company is a complex system, it has many stakeholders other than shareholders. So, the satisfaction of the shareholders’ expected utility cannot lead usually to the satisfaction of other stakeholders’ objectives. Therefore, the focus on utility maximization can be a destruction source of other objectives such as productivity, competitiveness and solvency. Our developed model integrates simulation approach with a Multi-Objective Particle Swarm Optimization algorithm. This model insures an optimal asset allocation that maximizes, simultaneously, shareholders expected utility and technical efficiency of European non-life insurance companies. The empirical application conducts a comparison between the attained results with multi-objective optimization technique and mono-objective technique to search the optimal asset allocation for non-life insurance companies. Our results show that the investment portfolio will be more diversified between most available investment assets. In addition, any decision maker should take account of different stakeholders’ objectives. Accordingly multi-objective optimization allows us to find the best asset allocation that maximizes simultaneously expected utility and technical efficiency of non-life insurance companies.

Suggested Citation

  • Jarraya, Bilel & Bouri, Abdelfettah, 2013. "Multiobjective optimization for the asset allocation of European nonlife insurance companies," MPRA Paper 53697, University Library of Munich, Germany, revised 2013.
  • Handle: RePEc:pra:mprapa:53697
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/53697/1/MPRA_paper_53697.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Brennan, Michael J. & Schwartz, Eduardo S. & Lagnado, Ronald, 1997. "Strategic asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1377-1403, June.
    3. Berger, Allen N. & Humphrey, David B., 1997. "Efficiency of financial institutions: International survey and directions for future research," European Journal of Operational Research, Elsevier, vol. 98(2), pages 175-212, April.
    4. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    7. Berger, Allen N. & Demsetz, Rebecca S. & Strahan, Philip E., 1999. "The consolidation of the financial services industry: Causes, consequences, and implications for the future," Journal of Banking & Finance, Elsevier, vol. 23(2-4), pages 135-194, February.
    8. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    9. Berger, Allen N. & Cummins, J. David & Weiss, Mary A. & Zi, Hongmin, 2000. "Conglomeration versus Strategic Focus: Evidence from the Insurance Industry," Journal of Financial Intermediation, Elsevier, vol. 9(4), pages 323-362, October.
    10. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    11. J. David Cummins & David J. Nye, 1981. "Portfolio Optimization Models for Property-Liability Insurance Companies: An Analysis and Some Extensions," Management Science, INFORMS, vol. 27(4), pages 414-430, April.
    12. Chiu, Mei Choi & Li, Duan, 2006. "Asset and liability management under a continuous-time mean-variance optimization framework," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 330-355, December.
    13. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    14. Chi Liu & Hailiang Yang, 2004. "Optimal Investment for an Insurer to Minimize Its Probability of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 11-31.
    15. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    16. Eling, Martin & Luhnen, Michael, 2010. "Efficiency in the international insurance industry: A cross-country comparison," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1497-1509, July.
    17. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    18. Cummins, J. David & Rubio-Misas, Maria & Zi, Hongmin, 2004. "The effect of organizational structure on efficiency: Evidence from the Spanish insurance industry," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3113-3150, December.
    19. Yu, Tzu-Yi & Tsai, Chenghsien & Huang, Hsiao-Tzu, 2010. "Applying simulation optimization to the asset allocation of a property-casualty insurer," European Journal of Operational Research, Elsevier, vol. 207(1), pages 499-507, November.
    20. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    21. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Kaucic & Roberto Daris, 2015. "Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints," Risks, MDPI, vol. 3(3), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jarraya, Bilel & Bouri, Abdelfettah, 2012. "Efficiency concept and investigations in insurance industry: A survey," MPRA Paper 53544, University Library of Munich, Germany, revised 2013.
    2. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    3. Tovar, Beatriz & Wall, Alan, 2015. "Can ports increase traffic while reducing inputs? Technical efficiency of Spanish Port Authorities using a directional distance function approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 128-140.
    4. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.
    5. Bilel Jarraya & Hatem Afi & Anis Omri, 2023. "Analyzing the Profitability and Efficiency in European Non-Life Insurance Industry," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-25, June.
    6. Koutsomanoli-Filippaki, Anastasia & Mamatzakis, Emmanuel, 2009. "Performance and Merton-type default risk of listed banks in the EU: A panel VAR approach," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2050-2061, November.
    7. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    8. Macedo, Pedro & Scotto, Manuel, 2014. "Cross-entropy estimation in technical efficiency analysis," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 124-130.
    9. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    10. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    11. Baharin, Roziana & isa, zaidi, 2018. "Box Cox- Fourier Flexible Functional Forms in Stochastic Metafrontier Analysis: The Cost Efficiency of the Insurance Industry in Malaysia," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 52(1), pages 135-144.
    12. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    13. Leverty, J. Tyler & Grace, Martin F., 2010. "The robustness of output measures in property-liability insurance efficiency studies," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1510-1524, July.
    14. Xiaohong Liu & Jiasen Sun & Feng Yang & Jie Wu, 2020. "How ownership structure affects bank deposits and loan efficiencies: an empirical analysis of Chinese commercial banks," Annals of Operations Research, Springer, vol. 290(1), pages 983-1008, July.
    15. María Rubio‐Misas, 2022. "Analysis of insurers' performance using frontier efficiency and productivity methods. The great contributions by David Cummins and Mary Weiss," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 445-489, December.
    16. Maryam Hasannasab & Dimitris Margaritis & Christos Staikouras, 2019. "The financial crisis and the shadow price of bank capital," Annals of Operations Research, Springer, vol. 282(1), pages 131-154, November.
    17. Feng, Guohua & Serletis, Apostolos, 2010. "Efficiency, technical change, and returns to scale in large US banks: Panel data evidence from an output distance function satisfying theoretical regularity," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 127-138, January.
    18. Daraio, Cinzia & Kerstens, Kristiaan & Nepomuceno, Thyago & Sickles, Robin C., 2019. "Empirical Surveys of Frontier Applications: A Meta-Review," Working Papers 19-005, Rice University, Department of Economics.
    19. Chrysovalantis Gaganis & Iftekhar Hasan & Fotios Pasiouras, 2013. "Efficiency and stock returns: evidence from the insurance industry," Journal of Productivity Analysis, Springer, vol. 40(3), pages 429-442, December.
    20. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.

    More about this item

    Keywords

    Simulation; Multi-objective particle swarm optimization; Asset allocation; Technical efficiency; Shareholders expected utility; European non-life insurance companies.;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:53697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.