IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v37y2013i1p139-149.html
   My bibliography  Save this article

Dynamic hedge fund portfolio construction: A semi-parametric approach

Author

Listed:
  • Harris, Richard D.F.
  • Mazibas, Murat

Abstract

In this article, we evaluate alternative optimization frameworks for constructing portfolios of hedge funds. We compare the standard mean–variance optimization model with models based on CVaR, CDaR and Omega, for both conservative and aggressive hedge fund investment strategies. In order to implement the CVaR, CDaR and Omega optimization models, we propose a semi-parametric methodology, which is based on extreme value theory, copula and Monte Carlo simulation. We compare the semi-parametric approach with the standard, non-parametric approach, used to compute CVaR, CDaR and Omega, and the benchmark parametric approach, based on both static and dynamic mean–variance optimization. We report two main findings. The first is that the CVaR, CDaR and Omega models offer a significant improvement in terms of risk-adjusted portfolio performance over the parametric mean–variance model. The second is that semi-parametric estimation of the CVaR, CDaR and Omega models offers a very substantial improvement over non-parametric estimation. Our results are robust to the choice of target return, risk limit and estimation sample size.

Suggested Citation

  • Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
  • Handle: RePEc:eee:jbfina:v:37:y:2013:i:1:p:139-149
    DOI: 10.1016/j.jbankfin.2012.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037842661200252X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2012.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Harris, Richard D.F. & Mazibas, Murat, 2010. "Dynamic hedge fund portfolio construction," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 351-357, December.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    6. Fung, William & Hsieh, David A, 2001. "The Risk in Hedge Fund Strategies: Theory and Evidence from Trend Followers," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 313-341.
    7. Giamouridis, Daniel & Vrontos, Ioannis D., 2007. "Hedge fund portfolio construction: A comparison of static and dynamic approaches," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 199-217, January.
    8. Vikas Agarwal, 2004. "Risks and Portfolio Decisions Involving Hedge Funds," The Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 63-98.
    9. Wegener, Christian & von Nitzsch, Rüdiger & Cengiz, Cetin, 2010. "An advanced perspective on the predictability in hedge fund returns," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2694-2708, November.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    12. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    13. Rania Hentati & Ameur Kaffel & Jean-Luc Prigent, 2010. "Dynamic versus static optimization of hedge fund portfolios: The relevance of performance measures," Post-Print hal-00608962, HAL.
    14. Gregoriou, Greg N., 2006. "Funds of Hedge Funds," Elsevier Monographs, Elsevier, edition 1, number 9780750679848.
    15. M. Gilli & E. Kellezi & H. Hysi, 2006. "A Data-Driven Optimization Heuristic for Downside Risk Minimization," Computing in Economics and Finance 2006 355, Society for Computational Economics.
    16. J. Cvitanic & A. Lazrak & L. Martellini & F. Zapatero, 2003. "Optimal allocation to hedge funds: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 28-39.
    17. Fung, William & Hsieh, David A, 1997. "Empirical Characteristics of Dynamic Trading Strategies: The Case of Hedge Funds," The Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 275-302.
    18. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    19. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
    2. Ricardo Laborda & Ramiro Losada, 2017. "Why is investors'mutual fund market allocation far from the optimum?," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    3. Roumpis, Efthymios & Syriopoulos, Theodore, 2014. "Dynamics and risk factors in hedge funds returns: Implications for portfolio construction and performance evaluation," The Journal of Economic Asymmetries, Elsevier, vol. 11(C), pages 58-77.
    4. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "Semi-nonparametric VaR forecasts for hedge funds during the recent crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 330-343.
    5. Miralles-Quirós, José Luis & Miralles-Quirós, María del Mar, 2017. "The Copula ADCC-GARCH model can help PIIGS to fly," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 50(C), pages 1-12.
    6. José Luis Miralles‐Quirós & María Mar Miralles‐Quirós & José Manuel Nogueira, 2019. "Diversification benefits of using exchange‐traded funds in compliance to the sustainable development goals," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 244-255, January.
    7. Kuang, Wei, 2021. "Which clean energy sectors are attractive? A portfolio diversification perspective," Energy Economics, Elsevier, vol. 104(C).
    8. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    9. Wenbo Wu & Jiaqi Chen & Zhibin (Ben) Yang & Michael L. Tindall, 2021. "A Cross-Sectional Machine Learning Approach for Hedge Fund Return Prediction and Selection," Management Science, INFORMS, vol. 67(7), pages 4577-4601, July.
    10. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    11. León, Ángel & Moreno, Manuel, 2015. "Lower Partial Moments under Gram Charlier Distribution: Performance Measures and Efficient Frontiers," QM&ET Working Papers 15-3, University of Alicante, D. Quantitative Methods and Economic Theory.
    12. Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
    13. Massimiliano Kaucic & Roberto Daris, 2015. "Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints," Risks, MDPI, vol. 3(3), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harris, Richard D.F. & Mazibas, Murat, 2010. "Dynamic hedge fund portfolio construction," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 351-357, December.
    2. Roumpis, Efthymios & Syriopoulos, Theodore, 2014. "Dynamics and risk factors in hedge funds returns: Implications for portfolio construction and performance evaluation," The Journal of Economic Asymmetries, Elsevier, vol. 11(C), pages 58-77.
    3. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    4. Harris, Richard D.F. & Stoja, Evarist & Tan, Linzhi, 2017. "The dynamic Black–Litterman approach to asset allocation," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1085-1096.
    5. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    6. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
    7. Víctor M. Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, "undated". "Portfolios in the Ibex 35 index: Alternative methods to the traditional framework, a comparative with the naive diversification in a pre- and post- crisis context," Documentos de Trabajo del ICAE 2015-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Jun 2015.
    8. Vladimir Rankovic & Mikica Drenovak & Branko Uroševic & Ranko Jelic, 2016. "Mean Univariate-GARCH VaR Portfolio Optimization: Actual Portfolio Approach," CESifo Working Paper Series 5731, CESifo.
    9. Franck Martin & Mai lan Nguyen, 2015. "Asymmetric dynamics in the correlations of hedge fund strategy indices: what lessons about financial contagion ?," Economics Bulletin, AccessEcon, vol. 35(4), pages 2110-2125.
    10. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.
    11. Boubaker, Heni & Sghaier, Nadia, 2013. "Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 361-377.
    12. Racicot, François-Éric & Théoret, Raymond & Gregoriou, Greg N., 2021. "The response of hedge fund higher moment risk to macroeconomic and illiquidity shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 289-318.
    13. Giamouridis, Daniel & Vrontos, Ioannis D., 2007. "Hedge fund portfolio construction: A comparison of static and dynamic approaches," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 199-217, January.
    14. Syriopoulos, Theodore & Roumpis, Efthimios, 2009. "Dynamic correlations and volatility effects in the Balkan equity markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(4), pages 565-587, October.
    15. Vrontos, Spyridon D. & Vrontos, Ioannis D. & Giamouridis, Daniel, 2008. "Hedge fund pricing and model uncertainty," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 741-753, May.
    16. Morton, David P. & Popova, Elmira & Popova, Ivilina, 2006. "Efficient fund of hedge funds construction under downside risk measures," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 503-518, February.
    17. Racicot, François-Éric & Théoret, Raymond, 2019. "Hedge fund return higher moments over the business cycle," Economic Modelling, Elsevier, vol. 78(C), pages 73-97.
    18. François-Éric Racicot & Raymond Théoret, 2022. "Tracking market and non-traditional sources of risks in procyclical and countercyclical hedge fund strategies under extreme scenarios: a nonlinear VAR approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-56, December.
    19. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    20. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.

    More about this item

    Keywords

    Funds of hedge funds; Portfolio optimization; Copula; Extreme value theory; Monte Carlo simulation;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:37:y:2013:i:1:p:139-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.